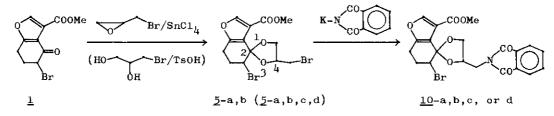
SELECTIVE CLEAVAGE OF UNSYMMETRICAL 2,2-SPIRO-1,3-DIOXOLANES I KETALIZATION OF 5-BROMO-3-METHOXYCARBONYL-4,5,6,7-TETRAHYDRO-BENZO[b]FURAN-4-ONE AND ITS ANALOGS

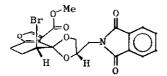
Makiko Sakai Research Laboratories, Shionogi & Co., Ltd. Sagisu 5-12-4, Fukushimaku, Osaka 553, Japan

<u>Abstract</u> Reaction of 2-bromocyclohexanones fused with an aromatic or heteroaromatic ring $(\underline{1}-\underline{4})$ with epibromohydrin or 3bromo-1,2-propanediol gave two (a and b) or four (a, b, c, and d) isomers of the corresponding 2,2-spiro-4-bromomethyl-1,3dioxolanes <u>5-8</u>, respectively. The stereochemistry of the reactions is discussed.

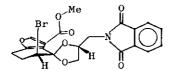
The stereochemistry of 1,3-dioxolane has recently received much attention. Yandovskii and Temnikova¹ reported that the reaction of benzaldehyde with psubstituted β , β -dimethylstyrene oxide in the presence of stannic chloride gave a mixture of cis and trans isomers of 4,4-dimethyl-2-phenyl-5-(p-substituted phenyl)-1,3-dioxolanes. Tishchenko et al² reported that the reaction of methyl thiocyanate in dichloromethane with epichlorohydrin in the presence of boron trifluoride afforded 5-chloromethyl-2-methylthio-2-oxazoline in 62 % yield. This paper deals with the reaction of 2-bromocyclohexanone fused with an aromatic or heteroaromatic ring (<u>1</u>-<u>4</u>) with dl-epibromohydrin, dl-3-bromo-1,2-propanediol, or glycerol in the presence of stannic chloride or p-toluenesulfonic acid, and discusses the stereochemistry of the products.

d1-5-Bromo-3-methoxycarbony1-4,5,6,7-tetrahydrobenzo[b]furan-4-one $\underline{1}^{5}$ (3.2 mM) in 1,2-dichloroethane (4 ml) was ketalized with d1-epibromohydrin (6.4 mM) in the presence of stannic chloride (0.32 mM) at 26-28°C for 2 h and gave a mixture of stereoisomeric 2,2-spiro-4-bromomethy1-1,3-dioxolanes 5 (5'-bromo-4bromomethy1-6',7'-dihydro-3'-methoxycarbony1-spiro[1,3-dioxolane-2,4'-(5'H)-benzo-[b]furans]), which was fractionated by column chromatography into two crystalline compounds, <u>5a</u> and <u>5b</u>, in 16 and 18 % yields, respectively (Scheme 1). On the other hand, azeotropic distillation of 1 (1.5 mM) in petroleum ether (20 ml) with Scheme 1

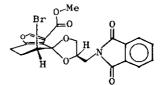


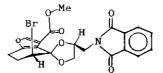

Table 1 Preparation and Modification of Dioxolanes

Starting	Reagent		Yield (%)				Total	
material	(Conditions)	Dioxolane	a	b	с	d	yıeld (%)	
<u>1</u> 5	Epibromohydrin/SnCl ₄ (in (CH ₂ Cl) ₂ , rt/2 h)	<u>5</u> 9	16	18	-	_	34	
<u>1</u>	Bromopropanediol/TsOH (in petr.ether, reflux/17 h)	<u>5</u>	5	10	б	11	32	
<u>2</u> 6	Epibromohydrin/SnCl ₄ (in CH_2Cl_2 , rt/2.5 h)	<u>6</u>	46	47		-	93	
<u>2</u>	Bromopropanedio1/TsOH (in benzene, reflux/5.5 h)	<u>6</u>	20	27	18	28	93	
27	Epibromohydrın/SnCl ₄ (in (CH ₂ Cl) ₂ , rt/2 h)	Z	41	45	_	-	86	
<u>4</u> 8	Epibromohydrın/SnCl ₄ (ın (CH ₂ Cl) ₂ , rt/24 h)	<u>8</u>	27	29	-	_	56	
<u>4</u>	Bromopropanediol/TsOH (in benzene, reflux/2 d)	<u>8</u>	20	28	24	27	99	
<u>2</u> 6	Glycero1/TsOH (in benzene, reflux/7 d)	<u>9</u> ¹⁰	15	18	15	20	68	
<u>9c</u> ¹⁰	TsC1/Py (rt/3.5 h)	<u>11c</u> ¹²	_		85	_	85	
<u>6a,b</u>	1-PrNH ₂ (reflux/4 d)	$\frac{12a,b}{13}$	43	44	_		87	
$11c^{12}$	" $(reflux/5 d)$	$12e^{12}$		_	89	-	89	
<u>7a,b</u>	" $(reflux/6 d)$	<u>13a,b</u> 14	42	45	-	_	87	
<u>8</u>	" (reflux/5 d)	14^{15}	18	25	21	24	88	
<u>12a,c</u> 13	$BsC1/Et_3N$ (rt/24 h)	<u>15a,c</u> 16	45	-	41	_	86	
<u>14a.b.c</u>	" (rt/5 h)	<u>16a,b,c</u> 17	26	36	31	-	93	


d1-3-bromo-1,2-propanediol (15 mM) in the presence of p-toluenesulfonic acid (0.05 mM) for 17 h gave 5a (5 %) and 5b (10 %) together with two other crystalline compounds, 5c (6 %) and 5d (11 %)⁹ (Table 1). These four compounds were found to

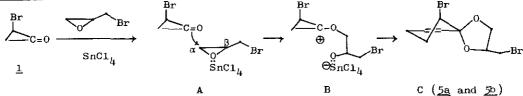
be stereoisomers of the possible configurations of the bromine atom at position 5', the unsymmetrical 1,3-dioxolane ring, and the bromomethyl group at position 4, according to elemental analysis data and ir, nmr, and mass spectra⁹. An isomerization of the compounds 5a in dichloromethane (reflux 24 h) in the presence of anhydrous p-toluenesulfonic acid (0.033 M equiv.) gave the isomer 5d (37 %) with recovery of 5a (59 %) by neutralization with triethylamine, while another isomerization of $\underline{5b}$ afforded $\underline{5c}$ (25 %) with recovery of $\underline{5b}$ (71 %) under the same conditions. The structures of 5a and 5b were conclusively determined by X-ray analysis using the corresponding phthalimide derivatives, 10a and $10b^{11}$, as depicted in Scheme 2^4 . In <u>10a</u>, the bonds of C(5')-Br and C(2)-O(3) are trans and the phthalimidomethyl group at position 4 has an endo configuration (endo means a configuration near the furan plane), while in <u>10b</u>, those of C(5')-Br and C(2)-O(3)are also trans and the phthalimidomethyl group at position 4 has an exo configuration. Accordingly, the structures of two other phthalimidomethyl compounds, <u>10c</u> and <u>10d</u>¹¹, are considered to be cis-endo and cis-exo configurations, respectively (Scheme 2).


Scheme 2

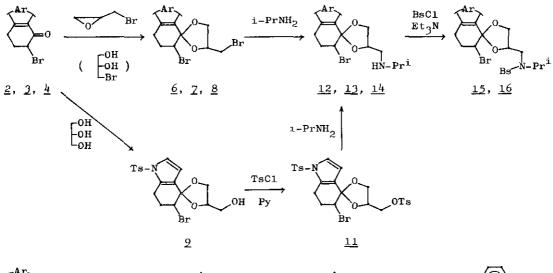

10a: trans-endo

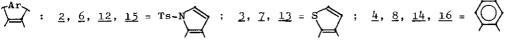
10c: cis-endo

10b: trans-exo



10d: cis-exo


It is known that the epoxide ring of epichlorohydrin is opened at the α carbon by the attack of a nucleophile in the presence of boron trifluoride² or of an acid with or without a base³. Activation of dl-epibromohydrin with stannic chloride would result in a δ + charge distribution mainly at the epoxide's α -carbon. The carbonyl oxygen of <u>1</u> could approach the α -carbon charged with δ + in the least hindered direction (Phase A, Scheme 3). In the following Phase B, the attraction between the carbenium ion (C \oplus) and the complex-anion (0:SnCl₄ \oplus) would afford those final products, trans-dioxolanes <u>5a</u> and <u>5b</u> (Phase C). On the other hand, in the ketalization of the furanone <u>1</u> with dl-3-bromo-l,2-propanediol, four possible stereoisomers of 1,3-dioxolanes (<u>5a</u>, <u>5b</u>, <u>5c</u>, and <u>5d</u>) were isolated by column chromatography. This result seems reasonable since the ketalization could run first with a predominant attack by the primary alcoholic hydroxy group to the carbonyl carbon followed by cyclization with water elimination.


Similar results were obtained with the ketalization and modification of 5bromo-1-p-toluenesulfonyI-4,5,6,7-tetrahydroindol-4-one 2^6 , 5-bromo-4,5,6,7tetrahydrobenzo[b]thiophen-4-one 2^7 , and 2-bromo-1,2,3,4-tetrahydronaphthalen~1one 4^8 with dl-epibromohydrin, dl-3-bromo-1,2-propanediol, or glycerol and gave the corresponding 2,2-spiro-4-(substituted methyl)-1,3-dioxolanes <u>6-9</u> (Scheme 4 and Table 1).

Scheme 3

Scheme 4

<u>Acknowledgement</u> The author thanks Drs. K. Igarashi, M. Fujimote, M. Shiro, and K. Shibata of Shionogi Research Laboratories for their helpful suggestions.

REFERENCES AND NOTES

- V. N. Yandovskii and T. I. Temnikova, <u>J. Org. Chem.</u>, (U.S.S.R.), 1968, <u>4</u>, 1695.
- 2. I. G. Tishchenko, O. N. Bubel, and O. A. Grinkevich, U.S.S.R. Inventor's Certificate, 70.7196 (1980).
- 3. E. L. Eliel, "Steric Effects in Organic Chemistry" edited by M. S. Newman, John Wiley & Sons Inc., New York, N.Y., pp. 106-108 (1956).
- 4. M. Sakaı, H. Nakai, and M. Shiro, Cryst. Struct. Comm., in press.
- 5. The furanone <u>1</u> was prepared from 4-oxo-4,5,6,7-tetrahydrobenzo[b]furan-3carboxylic acid (H. Stetter and R. Lauterbach, <u>Ann. Chem.</u>, 1962, <u>655</u>, 20) by methylation (CH₂N₂, 96 % yield) followed by bromination (PyHBr₃, 45 %), mp 80-81°C (decomposition). ir v^{KBr}_{max} cm⁻¹: 1705, 1688. ¹H-nmr (CDCl₃) δ (Hz): 2.52 (2H, ddd, J=8, 4.5, 4), 2.91 (dt, J=17.5, 8), 3.89 (s), 4.59 (1H, t, J=4), 7.99 (s).
- 6. The bromoindolone <u>2</u> (colorless crystals, mp 150-152°C) was prepared from 4,5,6,7-tetrahydroindol-4-one according to the method of W. A. Remers, R. H. Roth, G. J. Gibs, and M. J. Weiss, <u>J. Org. Chem.</u>, 1971, <u>36</u>, 1232.
- 7. D. T. Drewry and R. M. Scrowton, <u>J. Chem. Soc.</u>, (C), 1969, 2750.

۹.

8. K. G. Rutherford and C. L. Stevens, <u>J. Am. Chem. Soc.</u>, 1955, <u>77</u>, 3278.

Z.•		1r	¹ H-nmr (CDCl ₃) δ (Hz)			
Cpd	mp (°C)	v_{max}^{KBr} cm ⁻¹	-C00 <u>Me</u>	с(4)- <u>н</u>	С(2')- <u>Н</u>	ms m/z (M ⁺)
<u>5a</u>	123-4	1735	3.79(s)	4.54(dddd, J=6.5, 6.5, 6.5, 6.5)	7.86(s)	412, 410, 408
<u>5b</u>	112-3	1705	3.84(s)	4.82-5.20 (m)	7.96(s)	412, 410, 408
<u>5c</u>	93-4.5	1729	3.78(s)	4.85(dddd, J=7, 7, 7, 7)	7.84(s)	412, 410, 408
<u>5d</u>	102-3.5	1729	3.78(s)	4.87-5.23 (m)	7.83(s)	412, 410, 408

		ır	¹ H-nmr	z)	
Cpd	mp (°C)	v _{max} cm ⁻¹	p– <u>Me</u>	C(31).	-H
<u>9c</u>		3580 (снсі _з)	2.41 (s)	6.31 (1H, d	, J=3.5)
<u>9d</u>	139-40	3530 (КВг)	2.42 (s)	6.31 (1H, d	, J=3)
•					
		ır	¹ H-nmr	(CDC1 ₃) δ (Hz)) ms
Cpd	mp (°C)	KBr cm ⁻¹	-C00 <u>Me</u>	с(4)- <u>н</u>	m/z (M ⁺)
<u>10a</u>	133.5-4.5	1712, 1732 (sh)) 3.73 (s)	4.51-4.92 (1	n) 477, 475
<u>10b</u>	139-140	1711 (br)	3.72 (s)	4.73-5.08 (I	n) 477, 475
<u>10c</u>	184-5	1714, 1742	3.79 (s)	4.60-5.04 (r	n) 477, 475
<u>10d</u>	154-5	1709, 1734 (sh)	3.73 (s)	4.90-5.23 (r	n) 477, 475
2.					
	ir		¹ H-nmr (CI	0C1 ₃) δ (Hz)	
Cpd	v ^{CHC13} cm ⁻	-1 p- <u>P</u>	le	с(4)- <u>н</u>	с(3')- <u>н</u>
<u>11c</u>	1179, 137	74 2.41 (s),	2.44 (s) 4	.43-4.73 (m)	6.22 (d, J=3)
	1100 105	$r = \frac{1}{2} \left(\frac{1}{2} \right)$	2.45 (s) 4	.46-4.79 (m)	6.23 (d, J=3)
<u>11d</u>	1180, 137	(U 2.42 (S))			
	1180, 13,				
<u> </u>	1180, 13,				
	-CHMe	1	H-nmr (CDC1		с(3')- <u>н</u>
- <u></u> -		2p_ <u>Me</u>	H-nmr (CDCl ₃ 1H c)δ(Hz)	с(3')- <u>н</u>
Cpd	-CHMe	1 2 <u>p-Me</u> 1=6.5) 2.43 (s	H-nmr (CDC1 ₃ 1H c s) 3.93 (dd) δ (Hz) f C(5)- <u>H</u> 2 , J=7.5, 7.5)	с(3')- <u>н</u>
Cpd 12a	-CHMe 1.07 (d, 5	$\frac{p-Me}{1} = 6.5) = 2.43 (s)$	$\frac{\text{H-nmr} (\text{CDC1}_{3})}{1 \text{H c}}$) δ (Hz) f C(5)- <u>H</u> 2 , J=7.5, 7.5) , J=7.5, 7.5)	$\frac{C(3')-\underline{H}}{6.31 (d, J=3)}$
<u>Cpd</u> <u>12a</u> <u>12b</u>	-CH <u>Me</u> 1.07 (d, 5 1.06 (d, 5	$\frac{p-Me}{2} = \frac{p-Me}{2.43}$ $J=6.5) = 2.43 (s)$ $J=6.5) = 2.43 (s)$	$\frac{\text{H-nmr} (\text{CDC1}_3)}{1 \text{H c}}$ $3.93 (\text{dd})$ $3.92 (\text{dd})$ $3.91 (\text{dd})$) δ (Hz) f C(5)- <u>H</u> 2 , J=7.5, 7.5) , J=7.5, 7.5)	$\frac{C(3')-\underline{H}}{6.31 (d, J=3)}$ 6.35 (d, J=3.5) 6.32 (d, J=3)
Cpd <u>12a</u> <u>12b</u> <u>12c</u> <u>12d</u>	-CHMe 1.07 (d, 5 1.06 (d, 5 1.07 (d, 5	$\frac{p-Me}{2} = \frac{p-Me}{2.43}$ $J=6.5) = 2.43 (s)$ $J=6.5) = 2.43 (s)$	$\frac{\text{H-nmr} (\text{CDC1}_3)}{1 \text{H c}}$ $3.93 (\text{dd})$ $3.92 (\text{dd})$ $3.91 (\text{dd})$) δ (Hz) f C(5)- <u>H</u> 2 , J=7.5, 7.5) , J=7.5, 7.5) , J=7.5, 7.5)	$\frac{C(3')-\underline{H}}{6.31 (d, J=3)}$ 6.35 (d, J=3.5) 6.32 (d, J=3)
Cpd 12a 12b 12c	-CHMe 1.07 (d, 5 1.06 (d, 5 1.07 (d, 5	$ \frac{p-Me}{2} \qquad \frac{p-Me}{2.43} (s) $ $ J=6.5) \qquad 2.43 (s) $ $ J=6.5) \qquad 2.43 (s) $ $ J=6.5) \qquad 2.42 (s) $	$\frac{\text{H-nmr} (\text{CDC1}_{3})}{1 \text{H c}}$ $3.93 (\text{dd})$ $3.92 (\text{dd})$ $3.91 (\text{dd})$ $3.91 (\text{dd})$ $3.91 (\text{dd})$ $3.91 (\text{dd})$ $3.91 (\text{dd})$) δ (Hz) f C(5)- <u>H</u> 2 , J=7.5, 7.5) , J=7.5, 7.5) , J=7.5, 7.5) , J=8, 8)	$\frac{C(3')-\underline{H}}{6.31 (d, J=3)}$ 6.35 (d, J=3.5) 6.32 (d, J=3)
Cpd <u>12a</u> <u>12b</u> <u>12c</u> <u>12d</u>	-CHMe 1.07 (d, 5 1.06 (d, 5 1.07 (d, 5	$ \frac{p-Me}{2} = \frac{p-Me}{2.43} (s) $ $ J=6.5) = 2.43 (s) $ $ J=6.5) = 2.43 (s) $ $ J=6.5) = 2.42 (s) $ $ I=6.5) = 2.42 (s) $	$\frac{\text{H-nmr} (\text{CDC1}_3)}{1 \text{H c}}$ $3.93 (\text{dd})$ $3.92 (\text{dd})$ $3.91 (\text{dd})$) δ (Hz) f C(5)- <u>H</u> 2 , J=7.5, 7.5) , J=7.5, 7.5) , J=7.5, 7.5) , J=8, 8)	$\frac{C(3')-\underline{H}}{6.31 (d, J=3)}$ 6.35 (d, J=3.5) 6.32 (d, J=3) 6.35 (d, J=3.5)
Cpd <u>12a</u> <u>12b</u> <u>12c</u> <u>12d</u>	-CHMe 1.07 (d, 5 1.06 (d, 5 1.07 (d, 5 1.06 (d, 5	$ \frac{p-Me}{2} \qquad \frac{p-Me}{2.43} (s) $ $ J=6.5) \qquad 2.43 (s) $ $ J=6.5) \qquad 2.43 (s) $ $ J=6.5) \qquad 2.43 (s) $ $ J=6.5) \qquad 2.42 (s) $ $ 1 \qquad 1 \qquad$	$\frac{H-nmr}{1H c} (CDC1_{3})$ $\frac{1H c}{3} (dd)$ $3.93 (dd)$ $3.92 (dd)$ $3.91 (dd)$ $3.91 (dd)$ $3.91 (dd)$ $H-nmr (CDC1_{3})$) δ (Hz) f C(5)- <u>H</u> 2 , J=7.5, 7.5) , J=7.5, 7.5) , J=7.5, 7.5) , J=8, 8)) δ (Hz) C(3').	$\frac{C(3')-\underline{H}}{6.31 (d, J=3)}$ $6.35 (d, J=3.5)$ $6.32 (d, J=3)$ $6.35 (d, J=3.5)$ $-\underline{H} \qquad C(2')-\underline{H}$

15. <u>14d</u>: ¹H-nmr (CDC1₃) δ (Hz): 1.07 (d, J=6), 3.90 (1H, dd, J=7.5, 7.5), 4.3 (1H, dd, J=7.5, 7.5).

<u>16.</u>								
<i>a</i> ,		· · · · · · · · · · · · · · · · · · ·	H-nmr (CDC)	<u></u>				
Cpd 			<u>р-Ме</u>	- <u>CH</u> 2-N<				
<u>15a</u>	1.01(d,	J=7), 1.12(d, J=7)	2.41(s)	3.24(dd, J=6, 15), 3.47(dd, J=5, 15)				
<u>15c</u>	0.98(d,	J=7), 1.14(d, J=7)	2.41(s)	3.26(dd, J=6, 15), 3.49(dd, J=5, 15)				
17.								
	¹ H-nmr (CDC1 ₃) δ (Hz)							
Cpd	mp (°C)	-CHMe2		-C <u>H</u> 2-N<				
<u>16a</u>	168.5-9	1.02(d, J=6.5),1.14(d, J=6.5)		3.30(dd, J=6, 15),3.51(dd,J=4.5, 15)				
<u>16b</u>	128-9	1.00(d, J=6.5),1.06(d, J=6.5)		3.23(dd, J=5.5, 15),3.46(dd,J=5, 15				
<u>16c</u>	151-2	1.03(d, J=7),1.17(d, J=7)		3.30(dd, J=6, 15), 3.54(dd,J≈5.5, 1				
<u>16d</u>		1.02(d, J=6.5),1.14(d, J=6.5)		3.37(dd, J=6, 15),3.60(dd,J=5.5, 15)				

Received, 25th January, 1982