SYNTHESIS OF 3,3,5-TRIMETHOXY-2-PYRROLIDINONE AND ITS DERIVATIVES

Yoshiyuki Kosugi*, Fumiko Hamaguchi, Tatsuo Nagasaka, and Sadao Ohki

Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan

Hiroyuki Kikuchi

Tokyo Research Laboratories, Fujisawa Pharmaceutical Co., Ltd. Nukuikitamachi 3-8-3, Koganei, Tokyo 184, Japan

Abstract — A convenient synthesis of 3,3,5-trimethoxy-2-pyrrolidinone (lla-c) by using a reaction of α -halo- β -formylacrylic acid [3-halo-5-hydroxy-2(5H)-furanone] (3a-d) with alkoxide is described. An investigation for synthesis of 2,3-pyrrolidine-diones is also mentioned.

In our previous report, $^{1)}$ we showed that 5-ethoxy-2-pyrrolidinone (1) was a useful intermediate for the synthesis of 5-amino-2-pyrrolidinone derivatives, because the ethoxy group at the 5-position was easily substituted by the reaction with nucleophiles \underline{via} a highly reactive intermediate, iminium ion (2). This result suggested that 5-alkoxy-2-pyrrolidinones were expected to be valuable reagents to modify amino groups in biological substances such as amino acids or nucleosides. In this communication, we describe a new synthesis of more functionalized 2-pyrrolidinones, 3,3,5-trimethoxy-2-pyrrolidinones (11a-c) and its related compounds, by using a convenient reaction of α -halo- β -formylacrylic acid (3-halo-5-hydroxy-2(5H)-furanone) (3a-d) with alkoxide followed by a reaction of pseudoesters of β -formyl-propionic acid with ammonia.

Treatment of mucochloric acid ($\underline{3a}$) with sodium methoxide (3 eq. mol) in methanol [-10 \rightarrow +5°C, 24 hr] followed by acidification with methanolic hydrogen chloride afforded slightly yellow oil, which on preparative medium pressure liquid chromatography²) gave the methoxylactone ($\underline{4a}$) as colorless crystals in 50% yield,

Table 1. Reaction of α -halo- β -formylacrylic acids (3a-d) with sodium methoxide.

Starting Materials	Reaction Conditions	3 3	Pro	duci 5	ts(%) _6	c Z	2	Physic mp(°C)	cal data o: IR(cm ⁻¹)	f methoxylactones(NMR(δ ,CDCl3)	4a-ç) J н₄н₅
<u>3</u> a	-10→+5°C 24hr	_	50	8	7	4	-	90 ^a	1795 (C=O)	4.06(H ₄) 5.22(H ₅)	5Hz
<u>3</u> b	-10→+5°C 4hr	25	25	4	2	5	-	93 ^a	1795 (C=O)	4.13(H ₄) 5.37(H ₅)	5Hz
3 <u>c</u>	-10++5°C 4hr	-	43		-	-	6	55ab	1785 (C=0)	2.25(H ₄) 5.48(H _a)	5Hz
<u>3₫</u>	-10→+5°C 15hr	_	41		-	-	3		1103(0 0)	2.25(H ₄) 5.48(H ₅) 2.68(H ₄ ') (Jh444'	

a) Recrystallized from hexane. b) bp 109°C(6mmHg).

c) Satisfactory elemental analyses were obtained for 4 and 5. Physical data are listed in the last section of this paper, except for 4.

along with lesser amount of 5a (8%), 6a (7%), and 7a (4%). The structures of these products were determined by spectral analyses and by chemical conversion with 10% hydrochloric acid to the known mucoxychloric acid (8) 3), respectively. 4a and 5a were briefly hydrolyzed with 1% hydrochloric acid to give the hydroxylactone (7a), quantitatively. Treatment of 7a with methanol in the presence of catalytic amount of hydrogen chloride at room temperature regenerated a mixture of 4a and 5a (10:1), but when refluxed in methanol, 7a gave a mixture of 4a and 9a (1:1). Because 4a was always predominant in these reactions, the relative configuration of 4a was recognized as trans and that of 5a as cis. A mechanism for the formation of these compounds is assumed as shown in Scheme 1. Analogously, the reactions of mucobromic acid (3b), 3-chloro-5-hydroxy-2(5H)-furanone (3c), and 3-bromo-5-hydroxy-2(5H)-furanone (2d) with sodium methoxide were carried out to give the corresponding methoxylactones (4b and 4c) in moderate yields (see Table 1). Because these lactones (4a-c) were regarded as the pseudoesters of β -formylpropionic acid, they were expected to undergo ammonolysis to give hydroxylactams 4). Thus, 4a-c were treated with aqueous ammonia under ice cooling to give the desired hydroxylactams (10a-c), respectively (see Table 2). The conversion of 10a-c to the corresponding methoxylactams (lla-c) was performed by refluxing a methanol solution containing a catalytic amount of hydrogen chloride (see Table 3). A considerable amount of cis-isomers was not detected. Finally, the synthesis of 2,3-pyrrolidinediones was attempted. Hydrolysis of 10c

Finally, the synthesis of 2,3-pyrrolidinediones was attempted. Hydrolysis of 10c or 11c with 10% hydrochloric acid [room temp., 10 min] followed by careful evaporation of water gave the unstable ketolactam (12)⁵⁾ in 55% yield. The structure of 12 was confirmed as keto-form by its NMR spectrum (in DMSO) which showed typical signals of ABX system. In contrast with above result, it was found that 12 existed in D₂O as the equilibrium mixture (1:1) of the keto-form (12) and the gem-diolform (13)⁶⁾. However, neither the enol tautomer nor open-chain isomer were detected. On the other hand, deketalization of 11a and 11b, having halogen atom at the 4-position, was not established even under a drastic condition [reflux, 10% HC1]. This result suggests that the stability of a ketal function at the 3-position increased by the electron withdrawing effect of an adjacent halogen atom. In conclusion, the reaction described above provides a convenient method for the synthesis of 3,3,5-trialkoxy-2-pyrrolidinones. Further investigation to introduce

Table 2. Synthesis of 5-hydroxy-2-pyrrolidinones (10a-g)

	Reaction F Conditions		Physion (°C)	cal data of 10a-c) IR(cm ⁻¹)	$NMR(\delta, A)$	cetone-d ₆)
4a ~	0°C, 5min	75	163	1715(C=O) 1702(C=O)	4.08(H ₄)	5.07(H ₅)
4 b	0°C, 30min	85	158	1715(C=O) 1703(C=O)	4.22(H ₄)	5.22(H ₅)
4¢.	0°C, 5min	76	oil	1710(C≃O)	2.12(H ₄) 2.53(H ₄ ')	5.27(H ₅)

Table 3. Synthesis of 5-methoxy-2-pyrrolidinones (lla-c)

	g Reaction P ls Conditions	roduct (%)	Physical mp(°C)	data of lla-c IR(cm ⁻¹) ⊂	NMR(♂, C	DC1 ₃)	JH4H4	Ĵн₄н₅
10a ≈	reflux, lhr	99	137 ^a	1728(C=O)	4.12(H ₄)	4.78(H ₅)		2Hz
10b	reflux, lhr	91	144 ^a	1725 (C=O)	4.15(H ₄)	4.95(H ₅)		2Hz
100	reflux, lhr	71	86 ^a	1720 (C=O)	2.15(H ₄) 2.45(H ₄ ')	4.83(H ₅)	14Hz	3Hz 6Hz

a) Recrystallized from hexane.

nitrogen functions at the 5-position by the reaction of the methoxylactams ($\lim_{\infty} c$) with nucleophiles such as nucleosides is now undertaken.

REFERENCES AND NOTES

- 1) Y. Kosugi, F. Hamaguchi, T. Nagasaka, N. Ozawa, and S. Ohki, <u>Heterocycles</u>, 1980, 14, 1245.
- 2) SiO_2 : Iatrobeads 6RS-8060; solvent: hexane-acetone; flow rate: 20 ml/min. pressure: 1 kg/cm².
- 3) H. H. Wasserman and F. M. Precopio, <u>J. Am. Chem. Soc.</u>, 1952, <u>74</u>, 326.
- 4) F. Farina, M. V. Martin, and M. C. Paredes, Synthesis, 1973, 167.
- 5) $\underline{12}$, mp $\sim 250\,^{\circ}\text{C}(\text{decomp.})$; $IR(\text{KBr})\,\text{cm}^{-1}$: $3200\,\text{(br, NH, and OH)}$, $1760\,\text{(C=O)}$, $1710\,\text{(C=O)}$; $NMR(DMSO-d_6)$: 2.34 and 3.01(2H, AB of ABX, $J_{AB}=19.5\text{Hz}$, H_4), 5.1(1H, br, OH), 5.38(1H, X of ABX, $J_{AX}=2\text{Hz}$, $J_{BX}=6\text{Hz}$, H_5), 10.1(1H, br, NH); MS m/z: $115\,\text{(M}^+)$.
- 6) NMR(D₂O) δ : 2.23 and 2.70(2H, AB of ABX, J_{AB}=13.5Hz, H₄ of 13), 2.68 and 3.25 (2H, AB of ABX, J_{AB}=19.5Hz, H₄ of 12), 4.75(4H, s, exchangeable proton), 5.39 (1H, X of ABX, J_{AX}=3Hz, J_{BX}=6Hz, H₅ of 13), 5.70(1H, X of ABX, J_{AX}=2Hz, J_{BX}=6Hz, H₅ of 12).
- 7) 5a, mp 103°C; IR(KBr) cm⁻¹: 1785 (C=O); $NMR(CDCl_3)\delta$: 3.43, 3.48, and 3.72(3H×3, s, CH₃), 4.50(1H, d, J=4Hz, H₄), 5.62(1H, d, J=4Hz, H₅). 5b, mp 105°C; IR(KBr) cm⁻¹: 1785 (C=O); $NMR(CDCl_3)\delta$: 3.43, 3.45, and 3.68(3H×3, s, CH₃), 4.43(1H, d,

J=4Hz, H₄), 5.40(1H, d, J=4Hz, H₅). 6a, mp 35°C; IR(KBr)cm⁻¹: 1780(C=O), 1680 (C=C); NMR(CDCl₃)δ: 3.52 and 4.15(3H×3, s, CH₃), 5.67(1H, s, H₅). 6b, mp 54°C; IR(KBr)cm⁻¹: 1780(C=O), 1665(C=C); NMR(CDCl₃)δ: 3.53 and 4.17(3Hx2, s, CH₃), 5.65(1H, s, H₅). 9a, oil; NMR(CDCl₃)δ: 3.38, 3.42, 3.50, and 3.80(3Hx5, s, CH₃), 4.33(1H, d, J=5Hz, H_β), 4.57(1H, d, J=5Hz, H_γ). 9c, oil; NMR(CDCl₃)δ: 2.25(2H, d, J=5Hz, H_β), 3.33(12H, s, CH₃×4), 3.80(3H, s, CH₃), 4.45(1H, t, J=5Hz, H_γ).

Received, 29th January, 1982