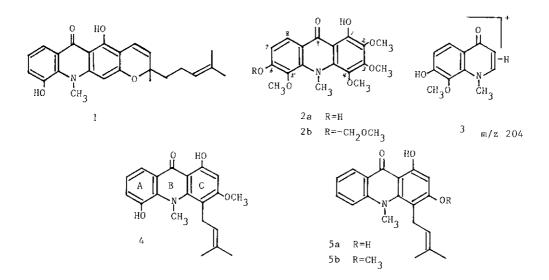
ACRIDONE ALKALOIDS IV¹. STRUCTURES OF FOUR NEW ACRIDONE ALKALOIDS FROM <u>GLYCOSMIS CITRIFOLIA</u> (WILLD.) LINDL.

Tian-Shung Wu and Hıroshı Furukawa^{*} Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468 Chang-Sheng Kuoh Chia-Nan Junior College of Pharmacy, Tainan, Taiwan, R. O. C.

<u>Abstract</u> — Four new acridone alkaloids, glyfcline (2a), glycocitrine-I (4), -II (5a) and its O-methyl ether (5b) were isolated from the root- and stem-bark of <u>Glycosmis citrifolia</u>, and characterized. Glyfoline (2a) is the most oxygenated acridonc alkaloid from

natural sources.


In previous paper¹, we have reported the first isolation of monoterpenoid acridone alkaloid glycofoline (1) from <u>Glycosmis citrifolia</u>(Willd.) Lindl. collected in Taiwan. Continuing the investigation of the constituents of the same plant, four new acridone alkaloids named glyfoline, glycocitrine-I, -II, and O-methylglycocitrine-II were isolated from the root- and stem-bark and characterized for the structure 2a, 4, 5a, and 5b, respectively.

Glyfoline (2a), orange plates, m.p. 215-217°(from acetone). The molecular formula C₁₈H₁₉NO₇ was fixed on the basis of the elemental analysis. The UV spectrum [λ max(MeOH)(log ϵ): 223(sh, 4.17), 261(sh, 4.50), 272(4.56), 333(4.12) and 409(3.83) nm] showed the typical absorption associated with 9-acridone nucleus². The bathochromic shifts of UV band with NaOCH₃ or AlCl₃, IR bands at 3400 and 1610 cm⁻¹, and 1 H-n.m.r. signals at δ 14.10 and 8.76 (disappeared on D₂O) indicated the presence of two phenolic hydroxyl groups in glyfoline, and at least one of them chelated with 9-carbonyl molety. In the aromatic proton region of the 1H-n.m.r. spectrum of glyfoline, only two-protons signals at δ 6.90 and 7.93 (each 1H doublet, J=10Hz) <u>ortho-</u>coupled each other were observed. The lower signal at δ 7.93 was characteristic to H-8 deshielded by 9-carbonyl molety in an acridone system. Other signals in ¹H-n.m.r. spectrum of glyfoline appeared at δ 3.78, 3.81, 3.84, 3.89, and 4.09 (each 3H singlet) were assigned to four methoxyls and an N-methyl group. These data, coupled with the empirical formula of glyfoline indicated the structure of glyfoline would be hexa-oxygenated N-methyl-9-acridone.

The foregoing evidence suggested the assignment of structure 2a for glyfoline.

The mass spectrum of glyfoline showed fragment peaks at m/z 361 (M^+ , 13%), 346 (73%), 316 (100%), and 204 (75%). The fragment peak at m/z 204 could be assigned to the ion 3 which resulted from the cleavage of ring C and associated transfer of a hydrogen. This fragmentation is known as the characteristic of the 1,2,3,4-tetra-O-substituted acridone alkaloids³.

The location of a hydroxyl group at C-6 (not at C-5) was confirmed by the following evidence. Treatment of 2a with chloromethylmethyl ether and NaOH in the presence of phase-transfer catalyst (Adogen 464 from Aldrich)⁴ afforded 2b as orange needles, m.p. 105-109°, $C_{20}H_{23}NO_8$. ¹H-n.m.r. δ 7.14(1H, d, J=9Hz, H-7), 8.04(1H, d, J=9Hz, H-8), 13.89(1H, s, C_1 -OH), 3.80, 3.82, 3.91, 3.96, and 4.15(15H, 5s, 4 OCH₃ & N-CH₃). In addition of these signals, the methoxymethyl signals appeared at δ 3.57(3H, s) and 5.36(2H, s). The NOE experiment of this compound was carried out and 12% enhancement of the signal at δ 7.14 (H-7) on irradiation at the frequency corresponding to the methylene protons of the methoxymethyl ether molety at δ 5.36 was observed.

On the result of this, the location of a phenolic hydroxyl group at C-6 in glyfoline was established. Consequently, glyfoline should be represented by the structure of 2a.

Glyfoline (2a) is the first base having hexa-O-substituents in N-methyl-9-acridone to be isolated from Nature.

Glycocitrine-I (4), m.p. 210-212°, $C_{20}H_{21}NO_4$, was isolated as orange yellow needles from CHCl, solution. The spectral data of this alkaloid were listed in Table 1. The UV and IR spectra exhibited bands characteristic 1-hydroxy-9-acridone system. This was also supported by the presence of one-proton sharp singlet at δ 14.23 which was assigned to the strongly hydrogen-bonded phenolic proton at C-1. In the aromatic proton region, ABX-pattern signals and oneproton sharp singlet were observed. Among them, one proton double-doublet at δ 7.72, X-part of the ABX-type signals was attributed to C-8 proton. This deshielding is expected because the proton lies in peri-position to the 9-carbonyl group. The presence of a prenyl molety in glycocitrine-I was suggested by 1 H-n.m.r. signals shown in Table 1, and MS fragments at M^{+} -15, M^{+} -55 and M^+ -68 together with ¹³C-n.m.r.(CDCl₃+DMSO-d₆) signals at δ 25.7(q), 18.0(q), 26.3(t), and 93.4(d). In ¹³C-n.m.r. spectrum of glycocitrine-I, N-methyl carbon signal was observed at δ 48.09. This lower chemical shift is characteristic of N-methyl carbon having substituents at both peri-positions (C-4 & C-5) in 9-acridone nucleus⁶. Thus, a sharp singlet at δ 6.37 in ¹H-n.m.r was assigned to a lone aromatic proton of $H-2^5$. Furthermore, appearance of the methylene carbon signal at δ 26.27 in ¹³C-n.m.r. was suggestive of the location of a prenyl monety at C-4⁶. In NOE experiment on irradiation at the frequency corresponding to the methoxy group at δ 3.93, 24% enhancement of the singlet signal at δ 6.37(H-2) was

Table 1	•	Glycocitrine-I (4)	Glycocitrine-II (5a)
		228(4.17),268(4.57), 322(sh,4.01),337(4.07), 415(3.58)	226(4.27),251(4.48),268(sh,4.54), 275(4.74),304(4.12),334(3.95), 405(3.77)
IR v max(KBr) cm ⁻¹		3240, 1620, 1585, 1565	3400, 1610, 1585, 1560
	H-7 H-6 H-5 H-2	7.12(1H,t, J=8Hz) 7.28(1H,d, J=8Hz) 6.37(1H,s) 1 1.68(3H,s), 1.77(3H,s) 3.47(2H,d, J=7Hz) 5.30(1H,m)	14.63 9.46 3.88 8.18(1H,dd, J=2 & 8Hz) 7.20(1H,t, J=8Hz) 7.70(1H,t, J=8Hz) 7.54(1H,d, J=8Hz) 6.24(1H,s) 1.70(3H,s), 1.76(1H,s) 3.47(2H,d, J=7Hz) 5.26(1H,m)
MS m/z 339(M ⁺ , 50%), 324(51%), 308(16%) 294(25%), 284(37%), 282(50%), 271(100%)			309(M ⁺ , 51%), 294(37%), 264(10%) 254(25%), 252(46%), 241(100%)

observed. However, on the irradiation to the N-methyl group at δ 3.65, no NCE enhancement was observed at any aromatic protons, expectedly.

On the basis of these spectral data, coupled with the facts of a positive Cibbs' reaction and giving no cyclization product with acids, the structure 4 was proposed for glycocitrine-I.

Glycocitrine-II (5a), orange needles from acetone, m.p. 168-169°, $C_{1,0}H_{1,0}NO_3$, showed a deep green color reaction with FeCl3. The UV and IR spectra, and ¹H-n.m.r. signal at δ 14.63 (Table 1) revealed a typical 1-hydroxy-9-acridone as similar in 4. Furthermore, four aromatic protons signals coupled each other due to the protons in non-substituted A ring, and a one-proton singlet assigned at either H-2 or H-4 were observed⁵. In addition, the presence of a prenyl molety in glycocitrine-II as in glycocitrine-I (4) was also suggested by 1 H-n.m.r. and MS spectra shown in Table 1. Treatment of glycocitrine-II with diazomethane or $\rm CH_2I/K_2CO_2$ in acetone afforded a mono-methyl ether as orange needles, m.p. 134-135° (acetone), C₂₀H₂₁NO₃. ¹H-n.m.r.(acetone-d₆)δ: 3.86(3H,s, N-CH₃), 3.93(3H,s, OCH₂), 6.34(1H,s, H-2), 7.21(1H,t, J=8Hz, H-7), 7.52(1H,d, J=8Hz, H-5), 7.70(1H,t, J=8Hz, H-6), 8.18(1H,dd, J=2 & 8Hz, H-8), 14.70(1H,s, C,-OH); 1.72(3H,s), 1.76(3H,s), 3.42(2H,d, J=7Hz), 5.30(1H,m): prenyl. This compound was also isolated from the same plant and identified by comparisons of ¹H-n.m.r., MS, and IR spectra, and mixed m.p. The ¹³C-n.m.r. spectrum of this compound showed the signals at δ 43.8 and 27.1 assigned to an N-methyl carbon and a methylene carbon of the prenyl molety, respectively. The chemical shift values of these carbons suggested the location of the prenyl moiety at $C-4^{7,8}$. The structure of glycocitrine-II, and its O-methyl ether can thus be assigned to formula 5a⁹ and 5b, respectively.

AKNOWLEDGEMENT We thank Dr. Y. Terada in our University for the measuring NOE n.m.r. spectra.

REFERENCES

- 1. Patr III. T.-S. Wu and H. Furukawa, <u>Heterocycles</u> (in press).
- J. Reisch, K. Szendri, E. Minker and I. Novak, <u>Die Pharmazie</u>, 1972, <u>27</u>, 208; R. D. Brown and F. N. Lahey, <u>Aust. J. Sci. Res. A₃, 1950, 593;</u>
 A. W. Fraser and J. R. Lewis, <u>J. C. S. Perkin I</u>, 1973, 1173.
- J. H. Bowie, R. G. Cooks, R. H. Prager and H. M. Thredgold, <u>Aust. J.</u> <u>Chem.</u>, 1967, <u>20</u>, 1179.
- F. R. van Heerden, J. J. van Zyl, G. J. H. Rall, E. V. Brandt and D. G. Roux, <u>Tetrahedron Lett.</u>, 1978, 661.
- The probability of H-3 can ruled out by the biogenetic consideration of naturally occurring hydroxylated acridone alkaloids¹¹.
- 6. Our detail discussions for 13 C-n.m.r. spectra of acridone alkaloids will be reported elsewhere.
- 7. In our knowledge, if the prenyl molety attached at C-2, signals of these carbons were expected to appear higher field at ô 33-35⁸ and 21.5-22.5, respectively⁶.
- 8. I. Mester, D. Bergenthal and Zs. Reisch, Z. Naturforsch., 1979, 346, 516.
- 9. Synthesis of this compound has been reported¹⁰. However, occurrence of this compound in natural sources has never been known.
- 10. J. Hlubucek, E. Ritchie and W. C. Taylor, Aust. J. Chem., 1970, 23, 1881.
- 11. S. Johne and D. Groger, <u>Die Pharmazie</u>, 1972, <u>27</u>, 195.

Received, 19th February, 1982