SATURATED HETEROCYCLES, PART 31, SYNTHESIS AND CONFORMATIONAL STUDIES
OF 2-0XO- AND 2-THIOTETRAHYDRO-1,3-0XAZINES WITH CONDENSED SKELETONS

Géza Stájer, Angela E. Szabó, Ferenc Fülöp and Gábor Bernáth^M
Institute of Pharmaceutical Chemistry, University Medical
School Szeged, POB 121, H~6701 Szeged, Hungary

and

Pál Sohár

EGYT Pharmacochemical Works, POB 100, H-1475 Budapest, Hungary

Abstract - Stereoisomeric 2-oxo- and 2-thio-4,5- (and 5,6)-tetramethylenetetrahydro-1,3-oxazines ($\underline{2}$ and $\underline{4}$) have been synthesized. 1 H nmr spectra afford evidence that in the case of the \underline{cis} isomers of derivatives $\underline{2}$, prepared from 2-(aminomethyl)cyclohexanols, the $\underline{0}$ -inside conformer predominates, independently of the \underline{N} -substituent (R=H, CH_3); in derivatives $\underline{4}$, made from 2-(hydroxymethyl)cyclohexylamines, the \underline{N} -inside conformer predominates if R=H, while the \underline{N} -outside conformer does so when $R=CH_3$.

We have reported the syntheses² and stereochemical study³ of tetramethylene- and pentamethylenetetrehydro-1,3-oxazin-2-ones. This work has now been extended to N-methyl-substituted tetramethylenetetrahydro-1,3-oxazin-2-ones and the corresponding 2-thiones.

The starting amino alcohols $\underline{1}$ and $\underline{3}$ were prepared by methods reported by us. 4,5 From these, the tetrahydro-1,3-oxazin-2-ones $\underline{2}$ and $\underline{4}$ were synthesized by the method of Mousseron and co-workers using urea (Method A), and by the sodium methoxide cyclization of the ester prepared by reaction with ethyl chloroformate (Method B). The thio derivatives, $\underline{2}\underline{a}-\underline{h}$, were obtained as described by Menard and co-workers the dithiocarbamates of the amino alcohols being prepared by their reaction with carbon disulfide followed by cyclization (Method C), or by reaction of the N-methylamino alcohols with thiophosgene (Method D).

R = H, CH3; X = 0, S

A: $(H_2N)_2CO$; C: CS_2/OH^- ; D: Cl_2CS ; B: $ClCO_2Et/MeONa$

Two (N- or 0-inside and N- or 0-outside) chair-chair conformers are possible in the <u>cis</u> isomers of compounds 2 and 4, whereas the <u>trans</u> isomers have a single chair-chair conformer.

Determination of the conformation of the <u>cis</u> isomers is based on the ^1H nmr data of the corresponding <u>cis-trans</u> isomer pairs. In all compounds, the bridgehead protons and the heterocyclic methylene protons form an <u>ABMX</u> spin system; comparison of their parameters (Table 1) permits the unequivocal determination of the conformations. For convenience, Table 1 also includes the data of four compounds (2a,b and 4a,b) reported earlier³. It is seen that the nature of the substituent X (0 or S) does not have an appreciable influence on the ^1H nmr data.

The $H_{\underline{M}}$ and $H_{\underline{X}}$ bridgehead protons are naturally axial in the <u>trans</u> compounds, and consequently the system is characterized by two <u>diaxial</u> coupling constants $(\underline{\mathfrak{I}}_{\underline{AM}}, \underline{\mathfrak{I}}_{\underline{MX}})$ and an <u>axial-equatorial</u> interaction $(\underline{\mathfrak{I}}_{\underline{BM}})$. Owing to the two <u>diaxial</u> couplings, the $H_{\underline{X}}$ signal of the <u>trans</u> compounds is very broad, the helf-height width being 20-25 Hz. For the <u>cis</u> isomers <u>2a</u> and <u>4a</u> the width of the $H_{\underline{X}}$ signal is less than 10 Hz; at the same time, its chemical shift is higher by 0.5 ppm than that for the corresponding <u>trans</u> isomers. This suggests that the $H_{\underline{X}}$ atom is <u>equatorial</u> in these compounds, as in the analogous heterocycles

	t io n		_						1 H nm	¹ H nmr dete	in CDCl ₃	t	(δ_{TMS} =0 ppm) at 60 MHz	MHZ
No.	Configura	zo	×	ဂို	Method	дд) Р ^Ч γ	(ppm)	д _{АВ}	(zн) 5. <mark>м</mark> Ус	(z	δΗ _χ (ppm) <u>m</u> (1H)	ΔŷH _X e	SNH ^f or (PPm) SNCH ₃ (PPm) <u>s</u> (1H or 3H)	& CH ₂ 9 & CH ⁹ (PPm) <u>m</u> (9H)
28 ⁸	cís	I	0		>	3,42	3,06	12	4	4	4,45	8	~ 7.0	1.2-2.2
2b ⁸	trans	Ξ	0		>	2,95	3, 30	12	=	IJ	3,87	25	~7.0	0.8-2.5
<u>2c</u>	C18	СН3	0	81-83	>	3, 59	2,94	10	60	2	4, 50	æ	3.00	0.8-2.5
<u>2d</u>	trans	СНЗ	0		>	3,15			86		3, 85	24	3,00	0.8-2.5
2ec	<u>cis</u>	π	S	144-146	C	3,50	3,10	12	5 7 0	ا ا ا	4,50	Ø 4	8.8	~ 8.8 1.5~3.5
2fc	trane	I	S	260-262	n	3,55	2.90	14	12	6	3, 85	21	~8.7	1.5-3.3
29°	<u>c19</u>	СН3	s	69-70	0	3,61	3.05	14	6	2	4, 50	10	3,45	1,2-2,3
2hc	trens	сн ₃	S	S 157-159	0	~ 3.35	5				~ 3.9	24	3,45	0,8-2,5
		I	0		A	4.22	4.11	12	2,5	2,5			~7.2	1.2-2.2
4b.8	trans	I	0		. A	3,90	4.17	10.5	11.5	4	2,98	21	\sim 7.1	0,8-2,3
46	C18	СH ₃	0	Եթ _{2mm} 160	В	4, 39	4,11	10	10	4.5	3.30	~ 25	3,00	1.0-2.0
1 <u>6</u>	trans	유 ₃	٥	5p2mm140	В	3,90	4,10	10	10	S	~ 3.0	~ 25	2,98	1.0-2.4
8pre	^a Prepared ² and	_	. TO	spectroscopically studied by us of the NCSO	11y	studied ³	by us	by us earlier.	0551 16 8 + MVC)q + MVC)q		. c1	(in KBr	r (in KBr): No bend in the region (2f) or 1510 cm^{-1} (25 b) 3000 cm^{-1}	id in the region
1685, BHalf	1685, <u>2b</u> 1685, ^e Half-band wid	5, 2c	2c 1680, th of the	1685, $\underline{2b}$ 1685, $\underline{2c}$ 1680, $\underline{2d}$ 1670, ⁸ Half-band width of the x signal.	e).	2 <u>d</u> 1670, <u>4a</u> 1690, <u>4b</u> 1685 X signal. ^f Broad signal,	<u>4b</u> 1685, signal,	•	5, 4d 1	680 cm	.1. dFrom	dFrom the AB	4c 1665, 4d 1680 cm ⁻¹ , dFrom the AB part of the ABMX multiplet 90verlapped multiplet of the cyclohexyl protons 5, 7, 8, 9, 10.	pert of the ABMX multiplet. ryl protons 5, 7, 8, 9, 10.

Fig. 1

(Type <u>4</u>)

(Type <u>2</u>)

investigated by us earlier, 2,3,8 This means that the N- (or O-) inside form is predominant. In accordance with this, the $\underline{\mathcal{D}}_{\underline{AM}}$ and $\underline{\mathcal{D}}_{\underline{BM}}$ coupling constants show the <u>disquatorial</u> and <u>equatorial-exial</u> mutual positions of the <u>AM</u> and <u>BM</u> proton pairs, respectively, in relation to the hetero ring; this is possible if the compound has N- (or O-) inside conformation.

In contrast to the above, in the case of the N-methyl cis derivative $(\underline{4c})$, the width of the $H_{\underline{X}}$ signal is similar to that in the <u>trans</u> derivatives $(\sim 25~\text{Hz})$; on the other hand, the chemical shift is somewhat higher than for the corresponding <u>trans</u> isomer, but lower by 0.35 ppm than for the <u>cis</u> isomer <u>4a</u> having <u>N-inside</u> conformation. All these facts show that the <u>N-outside</u> conformer is predominant in <u>4c</u>, <u>1.e</u>, when the N-CH₃ group is directly bonded to the cyclohexane ring. In accordance, the spectrum of <u>4c</u> indicates the <u>diaxial</u> and <u>equatorial-axial</u> nature of the <u>AM</u> and of the <u>BM</u> interactions, respectively.

REFERENCES

- Part 51/30: G. Téth, F. Fülöp, F. Bernáth, I. Hermecz, K. Simon and Z. Mészáros: <u>J.C.S. Perkin I</u>, in press; this forms Stereochemical Studies, Part 52.
- 2. G. Bernáth, Gy. Göndös, K. Kovács and P. Sohár: Tetrahedron, 1973, 29, 981.
- 3. P. Sohár and G. Bernáth: Org. Magnetic Resonance, 1973, 5, 159.
- 4. G. Bernáth, K. Kovács and K. L. Láng: <u>Acta Chim. Acad. Sci. Hung.</u>, 1970, 64, 183.
- L. Gera, G. Bernáth and P. Sohár: <u>Acta Chim. Acad. Sci. Hung.</u>, 1980, <u>105</u>,
 293.
- M. Mousseron, F. Winternitz and M. Mousseron-Canet: <u>Bull. Soc. Chim. France</u>, 1953, 737.
- 7. M. Menard, A. M. Wrigley and F. L. Chubb: Can. J. Chem., 1961, 39, 273.
- 8. G. Bernáth, F. Fülöp, L. Gera, L. Hackler, A. Kálmán, Gy. Argay and P. Sohár: <u>Tetrahedron</u>, 1979, 35, 799.

Received, 17th December, 1981