The preparation of $\alpha\,,\beta\,\text{--unsaturated}$ ketones by the grighard reaction with $\beta\,\text{--}\,(N-\text{alkyl-n-acylamino})\,\text{enones}$

Choji Kashima* and Yasuhiro Yamamoto

Department of Chemistry, University of Tsukuba,

Sakura-mura, Niihari-qun, Ibaraki 305, Japan

Abstract—The Grignard reaction of β -(N-alkyl-N-acylamino) enones afforded regionselectively α , β -unsaturated β -(N-alkyl-N-acylamino) - alcohols, which were converted into α , β -unsaturated ketones by hydrolysis accompanying dehydration. The resulting α , β -unsaturated ketones were regionsomeric with α , β -unsaturated ketones derived from β -(N,N-dialkylamino) enones by the Grignard reaction.

Recently we have succeeded in the preparation of isoxazoles having the different substituent groups on C-3 and C-5 position. I Isoxazole ring is easily cleaved into β -aminoenones by hydrogenation of isoxazoles 2 or the reaction of corresponding 2-methylisoxazolium salts with sodium methoxide. 3 For the sake of the extension of the synthetic utilities of isoxazoles, we have investigated the chemical properties of β -aminoenones. By the treatment with acyl chloride at low temperature, acylation of β -aminoenones is possible to control at nitrogen atom. Further, the reactivity⁵ and regioselectivity⁶ of N-substituted β-aminoenones with various nucleophiles are dependent on the properties of N-substituent groups. The β-aminoenones having the electron-donating group on nitrogen react with nucleophiles at β -carbon, while β -aminoenones having the electron-withdrawing group react at carbonyl carbon. Although N-unsubstituted or N-monosubstituted β -aminoenones do not react with Grignard reagents, β-(N,N-dialkylamino)enones regioselectively afford the α,β -unsaturated ketones by the reaction with Grignard reagents at β -position. Therefore, the Grignard reaction of β -(N-alkyl-N-acylamino)enones, which had the electron-deficient nitrogen on \(\beta - \text{position, was carried out.} \)

As a typical example, 3-(N-butylacetamido)-1-phenyl-2-buten-1-one ($\frac{1}{10}$) was treated with methylmagnesium iodide. From the ir (3400, 2950, 1620 and 1400 cm⁻¹) and the nmr spectra [δ = 0.9 (t, 3H), 1.2-1.7 (m, 6H), 1.65 (s, 6H), 1.90 (s, 3H), 5.75 (s, 1H) and 7.1-7.5 ppm (m, 5H)], the product was found to be 4-(N-butylacet-amido)-2-phenyl-3-penten-2-ol ($\frac{2}{10}$) which was hydrolyzed without isolation by hydrochloric acid to give 4-phenyl-3-penten-2-one ($\frac{2}{10}$) in 50 % yield based on $\frac{1}{10}$. This α , β -unsaturated ketone $\frac{2}{10}$ was regioisomeric with 3-methyl-1-phenyl-2-buten-1-one ($\frac{4}{10}$), which was obtained by the reaction of 3-(N,N-dimethylamino)-1-phenyl-2-buten-1-one with methylmagnesium iodide. Similarly, some β -(N-alkyl-N-acylamino)enones were treated with Grignard reagents to afford α , β -unsaturated ketones listed in Table.

From these results, the Grignard reagents seemed to attack on carbonyl carbon of β -(N-alkyl-N-acylamino)enones to afford α , β -unsaturated ketones, while the Grignard reagents attacked on β -carbon of β -(N,N-dialkylamino)enones. Thus isoxazoles having a various substituent group on C-3 and C-5 carbons are concluded to be useful precursor for the preparation of α , β -unsaturated ketones via β -aminoenones.

$$R^{2} \xrightarrow{\text{NH}_{2}/\text{Pt 2}} R^{3} \text{NH}_{2}$$

$$R^{2} \xrightarrow{\text{NH}_{2}/\text{Pt 2}} R^{2} \text{NH}_{2}$$

$$R^{3} \xrightarrow{\text{NH}_{2}/\text{Pt 2}} R^{2} \text{NH}_{2}$$

$$R^{2} \xrightarrow{\text{NH}_{2}/\text{Pt 2}} R^{2} \xrightarrow{\text{NH}_{2}/\text{Pt 2}} R^{2} \text{NH}_{2}$$

$$R^{2} \xrightarrow{\text{NH}_{2}/\text{Pt 2}} R^{2} \xrightarrow{\text{NH}_{2}/\text{Pt 2}} R^{2} \text{NH}_{2}$$

$$R^{2} \xrightarrow{\text{NH}_{2}/\text{Pt 2}} R^{2} \xrightarrow{\text{NH}_{2}/\text$$

Table

Starting Material				Reactant	Product	Yield'
	R ^l	R^2	R ³	(R ⁴ MgX)		(8)
le.	Ph	Me	Bu	MeMgI	4-Phenyl-3-penten-2-one	50
妝	Ph	Me	Мe	MeMgI	4-Phenyl-3-penten-2-one	44
fβ	Ph	Me	Me	PhMgBr	4,4-Diphenyl-3-buten-2-one	71
łε	Me	Me	Ме	MeMgI	4-Methyl-3-penten-2-one	83
રેક	Me	Me	Me	PhMgBr	4-Phenyl-3-penten-2-one	80
fε	Me	Me	Me	PrMgBr	4-Methy1-3-hepten-2-one	86
रेढ़	Pr	Me	Мe	MeMgI	4-Methyl-3-hepten-2-one	46
₽₽	Me	Ph	Ме	MeMgI	3-Methyl-1-phenyl-2-buten-1-one	43
ર ફ	Me	Ph	Ме	PhMgBr	1,3-Diphenyl-2-buten-1-one	54
₽ŧ	Me	Me	MeOCH ₂	MeMgI	4-Methy1-3-penten-2-one	92
ĮЯ	Pr	Me	MeOCH ₂	MeMgI	4-Methyl-3-hepten-2-one	40

* Yields of products were based on $\beta\text{-}(N\text{-}alkyl\text{-}N\text{-}acylamino})\,\text{enones}\ (\cline{1})\,.$

REFERENCES

- 1. C. Kashima, Y. Yamamoto, and Y. Tsuda, Heterocycles, 1977, 6, 805.
- C. Kashima, S. Tobe, N. Sugiyama, and M. Yamamoto, <u>Bull. Chem. Soc. Jpn.</u>, 1973, 46, 310.
- 3. C. Kashima, N. Mukai, Y. Yamamoto, Y. Tsuda, and Y. Omote, Heterocycles, 1977, 7, 241.
- 4. C. Kashima, Y. Yamamoto, and Y. Tsuda, J. Org. Chem., 1975, 40, 526.
- 5. C. Kashima, S. Shirai, and Y. Yamamoto, Heterocycles, 1979, 12, 657.
- 6. a) C. Kashima, Y. Yamamoto, Y. Omote, T. Otsuka, and Y. Tsuda,
 Heterocycles, 1976, 4, 1387.
 - b) C. Kashima, Y. Yamamoto, Y. Omote, and Y. Tsuda, <u>Bull. Chem. Soc. Jpn.</u>, 1977, 50, 543.
 - c) C. Kashima and Y. Yamamoto, <u>Bull. Chem. Soc. Jpn.</u>, 1979, 52, 1735.
- 7. a) E. Benary, Ber., 1931, 64, 2543.
 - b) J. Ficinni and H. Normant, Bull. Soc. Chim. Fr., 1964, 1294.

Received, 25th February, 1982