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-- The wavenumbers of the W bands in the phosphorescence spectra 

of pyridine-like heterocycles andlor the corresponding bands in their S-T 

absorption spectra ere linearly correlated with the HMO N-V1 transition 

energies, i. e., the transition energies from the highest occupied n-mole- 

cular orbital to the lowest unoccupied n-molecular orbital. A similar re- 

lationship has been established in the case of thiophene-like heterocycles. 

Various semiempirical molecular orbital methods can be used to interpret the electronic absorption 

and emission (fluorescence, phosphorescence) spectra of organic compounds on quantitative basis. 

In the case of n-electron system, the PPP (PariserParrPople, ICI-SCP-MO) method has been very 

sueeesaful. 1-5 

However, in spite of the success obtained with the semiempirical methods, the HMO method still re- 

presents the simplest approach leading to meaningful empirical correlations of the calculated 

E(N-V1) values (corresponding to the transition from the highest occupied n-molecular orbital, 

HOMO, to the lowest unoccupied n-molecular orbital, UMO) with the energies (usually expressed as 

wavenumbers) of the longest-wavelength S-S bands in the absorption spectra of conjugated 1- 

6-13 
electron systems. Regression lines obtained for a series of structurally related compounds 

can be used to predict the wavenumbers or energies of the longest-wavelength bands for compounds 

for which the experimental absorption curves are not available. 

In the HMO method, the energy of N-V1 transition represents an average between the So-S1 and 

the So-T1 transitions and thus one would a180 expect a linear correlation between the HMO N-V1 

transition energies and the wavenumbers of the W phosphorescence bsnds andlor the corresponding 

bends in the S-T absorption spectra of aromatics. Indeed, it hse been shown that the wavenumbers 

of the S-T absorption bands (S-T absorption spectra) or S-T emission bsnds (phosphorescence 

spectra) for various n-electron systems are successfully correlated with the HMO N-V1 transition 

energies. 
14,15 



It is the purpose of the present camnication to show that excellent correlation8 between the 

wavenumbers of the S-T bands and the HMO energies are obtained for heterocyclic analogs of ben- 

zenoid hydrocarbons treated as individual, structurally homogeneous groups. The group selected 

for such a correlation are the pyridine-like heterocycles for which a sufficient number of 

experimental emission and absorption data are available. The experimental wavenumbers of S 0-~1 

absorption and emission maxima, the lifetimes of phosphorescence, and the energiea of N-V1 tran- 

sitions are sumnarized in Table 1. In those cases where both the absorption and emission data 

were available, an average value was used in the correlation. All experimentally observed trsn- 

sitions given in Table 1 are n-8 transitions. The lowest energy triplet states of pyridine-like 

heterocycles are known to be n.n* states and not p.n* states which usually correspond to higher 

energy. Thus, the lowest n,n* triplet state of acridine corresponds to 15.84 kan-l whereas its 

n,n* triplet state is found at 21.40 kon-l.16 

Table 1. Wavenumbers of the W Maxima of Absorption and Emission S O-T1 Bands, Lifetimes of 

Phosphorescence (rp), and the HMO N-V1 Transition Energies for Pyridine-Like Hetero- 

cycles 

-1 
No. compounda Absorption (kan-') Emission (kan ) ~ v e r a g e ~  rp(sec) E(N+V~)' 

(Ref.) (Ref .) (km-l) (Ref.) (6 Units) 

Pyridine 29.65 (17) 

Quinoline 21.85 (17,20) 

Ieoquinoline 21.21 (17) 

Benzo[hlquinoline 21.74 (17) 

Benzolflquinoline 21.88 (17) 

Phenanthridine -22.20~ (17) 

Benzolglquinoline 15.07 (17) 

Ben~[~Iisoquinoline 14.87 (17) 

Acridine 15.84 (25) 

Thebenidine (4-azapyrene) 16.93 (17) 

Dibenzla,hlaeridine - 
Dibenz[a,ilacridine - 

%ing Index nomenclature is used throughout. b~his value was used for the correlation in Fig. 

1. C~alculated by the HMO method, cf. refs. 28'29 The following values were adopted for the 

Coulomb (a) and resonance (6) integrals: oN = a + 0.56; BCN = 6. d ~ h e  value for 2,6-lutidine 

1 19 is 28.16 k m -  . value is for 2,6-lutidine. fThis value was not used in correlation. 
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Pig. 1. Plotof wavenumbera of the first maxima of the 

S-T bands against the HMO N-V1 transition 

energies for pyridine-like heterocyflea (for 

numerical values and the designation of com- 

pounds, see Table 1). 

It can be seen from Teble 1 that, in 

most eaaes, the absorption and emission 

are quite close and that the average of 

the two values is then a reasonably re- 

liable quantity for a meaningful car- 

relation which is depicted in Fig. 1. 

The regression line obtained by the 

least squaras method is 

-1 
(SO+T1, kcm ) = 13.073 E(N+V1) (8) 

+ 5.565 [I] 

Number of paints n - 12; correlation 
coefficient r = 0.975 (the correlation 

is significant an 1% probability level) 

The slope and the intercept of the 

above regression line are very close to 

those obtained previously for a group 

of conjugated systems treated as a whole 

without elassifi~ation according to the 

structural types.15 it is interesting 

to compare Eq. [I1 with the regression 

line obtained for the longest-wavelength bands in the S-S absorption spectra of pyridine-like he- 

terocycles with the corresponding excitation energies of the N-V1 transitions: 
28 

The slopes of the regression lines [II and 121 are reasonably close. 

Another ~tructurally homogeneous group of heterocycles where there is a clear correlation between 

the S-T absorption and/or emiseion bands and the E(N-V1) values are the thiophene-like hetero- 

cycles. In this case, however, only data for three compounds are available (Table 2). 

It should be possible to establish similar correlations for other groups of aromatic heterocycles 

as BOD" ae enough S-T absorption and/or emission data become available. Correlations of the 

SO-T1 transition maxima with the HMO E(N-V ) values can be used to predict energies of S 
1 0-=1 

transitions for compounds for which the experimental data ere not yet available. 



Table 2. Wavenumbers of the G-0 Maxima of Absorption and Fmission SO-+T1 Bands and the HMO N-V1 

Traneition Energies for Thiaphene-Like Reterocyclesa 

Absorption (kcm-l) Emission (kcm-l) Average (kcm-1) E(N+V1) 
b 

No. Cwpound 

(Ref .) (Ref .) (8 Unite) 

13 Thiophene 31.25 (30) - 31.25 1.611 
II 

14 Benzo[bl thiophene 23.97 (17) 
,.w 

24.01 (31) 23.99 1.392 

15 Dibensothiophene 24.07 (32) - 24.10, 23.20 23.79 1.376 

(33,34) 

%or the regression line for the So-S1 bands, see ref. b~alculated by the HMO method on 

a CDC 3100 computer. The model of sulfur which does not allow for the participation of the d- 

orbitals of aulfur was used.13 The following values were adopted for the Coulomb (a) and reso- 

nance (8) integrals: a - a + 8; BCs - 0.7 8. S 
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