SELECTIVE CLEAVAGE OF UNSYMMETRICAL 2,2-SPIRO-1,3-DIOXOLANES, II.¹ CLEAVAGE OF KETAL RING OF 5'-BROMO-6',7'-DIHYDRO-4-ISOPROPYL-AMINOMETHYL-1'-p-TOLUENESULFONYL-SPIRO[1,3-DIOXOLANE-2,4'-(5'H)-INDOLE] AND ITS ANALOGS

Makiko Sakai

Research Laboratories, Shionogi & Co., Ltd. Sagisu 5-12-4, Fukushimaku, Osaka 553, Japan

<u>Abstract</u>—The bromodioxolane and its analogs $(\underline{1}-\underline{5})$ were treated with organic base (DBU, DBN, or morpholine), acid (p-toluenesulfonic acid or Lewis acid), or Lewis acid/tertiary amine, and yielded 4-alkoxyindoles ($\underline{6}-\underline{17}$). Reaction of $\underline{1}$ with organic base gave two isomeric 4-alkoxyindoles, $\underline{6}$ (tosylpindolol, a secondary alcohol) and $\underline{11}$ (a primary alcohol), while tri-noctylamine with stannic chloride afforded $\underline{6}$ (74 %) without producing $\underline{11}$.

As reported in Part I of this series¹, bromodioxolane <u>1</u> was prepared from 5bromo-1-p-toluenesulfony1-4,5,6,7-tetrahydroindol-4-one <u>18</u> by ketalization with epibromohydrin or 3-bromo-1,2-propanediol and subsequent amination with isopropy1amine. Dehydrobromination of the dioxolane <u>1</u> in toluene with 5 M equivalents of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) at 80°C for 21 h gave two 4-alkoxyindoles: a secondary alcohol <u>6</u> (35 % yield) formed by cleavage of the C(2)-O(3) bond and a primary alcohol <u>11</u> (39 %) by cleavage of the C(2)-O(1) bond (Scheme 1). These two compounds (<u>6</u> and <u>11</u>) were determined to be stereoisomers based on the position and nature of the alcoholic hydroxyl groups, from elemental analysis data and 1r, nmr, and mass spectra⁷. No regioselective cleavage was observed in the reaction of the bromodioxolane or its amides <u>1-5</u> with morpholine or 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), and the corresponding secondary and primary alcohols, <u>6-10</u> and <u>11-15</u>, were obtained (Table 1).

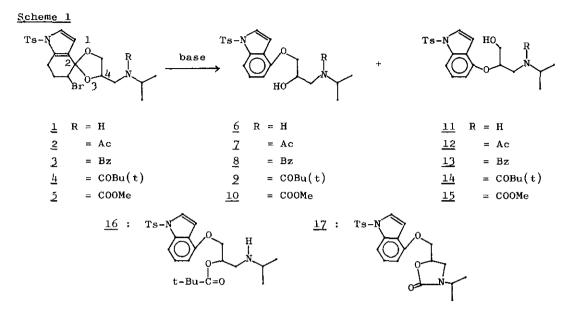
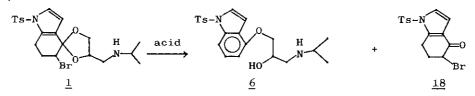
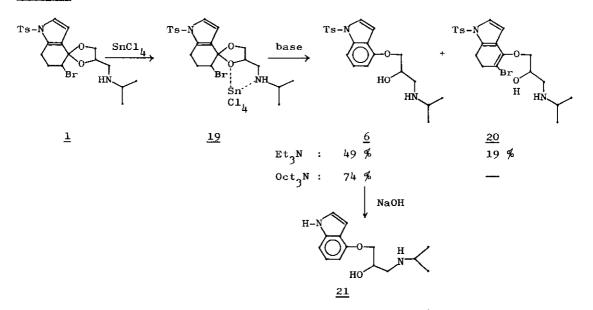



Table 1 Reaction of Dioxolanes 1-5 with Organic Base

Dioxol-			Reaction		Yield (%)		
ane	Base (M equiv.)	Solvent	Temp.(°C)	Time (h)	Sec. alc.	Prim. alc.	
<u></u> 1	DBU (5)	Toluene	80	21	<u>6</u> ⁷ (35)	<u>11</u> ⁷ (39)	
n	Morpholine (55)		Reflux	27	" (36)	" (42)	
<u>2</u> 6	DBN (2)	HCONMe2	60	72	7 ⁷ (49)	<u>12</u> 7 (35)	
<u></u> 2 ⁶	18 18	"	80	21	<u>8</u> 7 (44)	<u>13</u> 7 (34)	
<u>4</u> 6	H 11	*1	60	85	<u>9</u> 7(9)+ <u>16</u> 7(36)	<u>14</u> 7 (42)	
<u>5</u> 6	18 98	78	11	72	<u>10</u> ⁷ (16)+ <u>17</u> ⁷ (27)	<u>15</u> 7 (37)	

In the cleavage of pivaloyl amide $\frac{4}{2}$ or methoxycarbonyl amide 5, a by-product, the pivalate $\underline{16}^7$ (36 %) of the secondary alcohol $\underline{9}$ or the oxazolone $\underline{17}^7$ (27 %) cyclized from the corresponding secondary alcohol $\underline{10}$, was obtained together with the respective alcohols: $\underline{9} (9 \%)/\underline{14} (42 \%)$ and $\underline{10} (16 \%)/\underline{15} (37 \%)$. Neither dehydrobromination nor cleavage of the ketal ring was found under the action of triethylamine, N-methylmorpholine, or potassium t-butoxide, and the starting material $\underline{1}$ was recovered.

Cleavage of the bromodioxolane <u>1</u> with acid (p-toluenesulfonic acid or Lewis acid such as boron trichloride, titanium tetrachloride, and stannic chloride) gave the secondary alcohol <u>6</u> and/or the deketalized product <u>18</u> (Scheme 2). Treatment of the bromodioxolane <u>1</u> with p-toluenesulfonic acid (1.0 M equiv.) in Scheme 2



xylene (reflux 6 h) gave the secondary alcohol <u>6</u> and the bromoindolone <u>18</u> in 23 and 17 % yields, respectively, without the primary alcohol <u>11</u>. This result can be reasonably interpreted by considering that the p-toluenesulfonic acid salt of <u>1</u> would lead to easier cleavage of the C(2)-O(3) bond than the C(2)-O(1) bond by an interaction of the ammonium ion (Table 2).

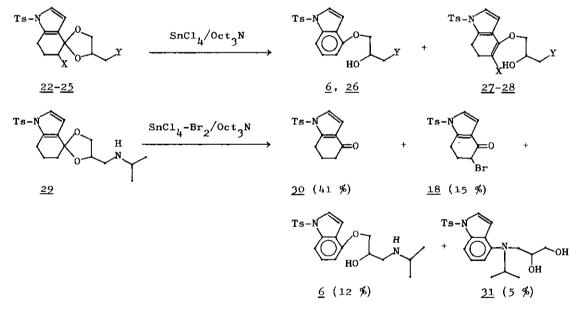
Acid		Reaction		Yield (%)		Recovery (%)	
(M equiv.)	Solvent	Temp.(°C)	Time (h)	<u>6</u>	18	of <u>1</u>	
TsOH (1.0)	Xylene	Reflux	6	23	17	7	
BC1 ₃ (1.0)	MeN02	-17~20	48	65	19	—	
TiC1 ₄ (1.0)	n	-18~20	24	<u> </u>	75	12	
SnCl ₄ (1.0)	"	n	11	—	4	88	

Table 2 Selective Cleavage of Bromodioxolane 1 with Acid

Scheme 3

Selective cleavage of bromodioxolane <u>1</u> with Lewis acid (beryllium dichloride, titanium tetrachloride, or stannic chloride) in the presence of tertiary amine (triethylamine, tri-n-butylamine, tri-n-octylamine, or tri-n-dodecylamine) gave only the secondary alcohol <u>6</u> (Table 3). It seems rational that stannic chloride, for example, could form a five-membered complex <u>19</u> with the dioxolane <u>1</u> in favor of the selective cleavage of the C(2)-O(3) bond (Scheme 3). In fact, higher yield (74 %) of the secondary alcohol <u>6</u> was obtained from the bromodioxolane <u>1</u> by reaction with tri-n-octylamine in the presence of stannic chloride. When triethylamine was used instead of tri-n-octylamine, <u>6</u> and bromo-enol ether <u>20</u> were obtained in 49 and 19 % yields, respectively. The tosyl group of the secondary alcohol <u>6</u> was removed by hydrolysis with sodium hydroxide in ethanol (reflux 14 h), giving pindolol <u>21</u> (92 %) which was identical with the authentic sample of pindolol, one of the β -adrenergic blocking agents on the market⁵. <u>Table 3</u> Selective Cleavage of Bromodioxolane <u>1</u> with Lewis Acid/Tertiary Amine in Dichloromethane

Lewis Acid (M equiv.)		Tert. Amine (M equiv.)		Reacti	Reaction		Yield (%)		
				Temp.(°C)	Time (h)	Sec. alc. <u>6</u>	By-product	of <u>1</u> (%)	
BeC12	(4)	Et ₃ N	(4)	12	19	32	56 (<u>18</u>)	_	
вс1 ₃	(1)	"	(1)	-17~25	48	32	10 (<u>11</u>)		
ZrCl ₄	(4)	"	(4)	-17~12	19	33	21 (<u>18</u>)		
SnC14	(2.5)	17	(5)	-75~28	24	49	19 (<u>20</u> ⁷)	9	
11	(3.5)	BuaN	(5)	-15~29	3	70	17 (<u>20</u> ⁷)	_	
TiC14	(3.5)	Oct ₃ N	(5)	-17~30	3	51	trace(<u>20</u> 7)		
SnC14	(3.5)	11	(5)	-20~25	3	74	11 11	4	
	(3.5)	Dod 3N	(5)	2~29	3	63	10 (<u>20</u> ⁷)	—	


The influence of the functional group at position 4 or 5' on the selective cleavage of the 2,2-spiro-1,3-dioxolane ring was examined by using analogous dioxolanes <u>22-25</u> with the same reagent system consisting of stannic chloride and tri-n-octylamine (Table 4). It seems necessary for the selective cleavage to have an aminomethyl group at position 4 on the 1,3-dioxolane ring.

It is interesting to note that when a solution of stannic chloride (3.5 M equiv.) and bromine (1.3 M equiv.) in 1,2-dichloroethane was added dropwise to a cooled solution of the tetrahydroindole-dioxolane 29^4 and tri-n-octylamine (5 M equiv.) with stirring at -17°C for 15 min and the mixture was allowed to stand for 3 h up to 25°C and treated with 5N sulfuric acid, four products were obtained by column chromatography: deketalized ketone <u>30</u> (41 %), bromoketone <u>18</u> (15 %), tosylpindolol <u>6</u> (12 %), and an aromatized tertiary amine <u>31</u>⁷ (5 %) (Scheme 4).

<u>Table 4</u> Reaction Product from Analogous Dioxolanes <u>22-25</u> with Stannic Chloride and Tri-n-Octylamine

Dioxo1-	Substituent		Yield (%)	Recovery (%)	
ane	-x	-Y	Sec. alc.	Halo-enol	of Dioxolane
<u>22</u> 2	-Br	-N	65 (<u>26</u> ⁷)	7 (<u>27</u> ⁷)	
<u>23</u> 1	*1	-Br	_	_	93
<u>24</u> 1	17	-OTs	_		99
<u>25</u> 3	-C1	-NH-Pr(i)	62 (<u>6</u> 7)	13 (<u>28</u> ⁷)	<u> </u>

Scheme 4

<u>Acknowledgement</u> The author thanks Drs. K. Igarashi, M. Fujimoto, and K. Shibata of Shionogi Research Laboratories for their helpful suggestions.

REFERENCES AND NOTES

- 1. Part I: M. Sakai, this journal, in press.
- 2. The piperidino-dioxolane 22 was prepared from the corresponding 4-(bromomethyl)dioxolane 23¹ with piperidine. Yield: 72 %.
- 3. The chlorodioxolane 25 was prepared from 1-p-toluenesulfony1-4,5,6,7-tetrahydroindol-4-one 30¹ in the following sequence: by chlorination with $CuCl_2/HC(OMe)_3$ in methanol [the chloroindolone, mp 155-156°C, 83 % yield, ms m/z (M⁺) = 325, 323], ketalization with epibromohydrin/SnCl₄¹ [the chlorodioxolane, 88 % yield, ms m/z (M⁺) = 463, 461, 459], then aminolysis with isopropylamine (83 %).
- 4. The tetrahydroindole-dioxolane <u>29</u> was prepared by ketalization of the ketone $\underline{30}^1$ with epibromohydrin/SnCl₄ (91 %) and followed by amination with isopropylamine (85 %).

5. Sandoz Ltd., Swiss Patents 469,002 and 472,404 (1969).

<u>6</u> .			
Cpd	$1r v_{max}^{CHC1} 3 cm^{-1}$	¹ H-nmr (CDC1 ₃) δ (Hz)	ms m/z (M^+)
<u>2</u>	1630	2.13 (s, -COMe), 2.41 (s, p-Me)	526, 524
<u>3</u>	1624	2.40 (s, p- <u>Me</u>)	
<u>4</u>	1611	1.26 (s, -COC <u>Me</u> 3), 2.39 (s, p-Me)	568, 566
<u>5</u>	1693	2.40 (s, p- <u>Me</u>), 3.68 (s, -COO <u>Me</u>)	542, 540

<u>7.</u>			¹ H-nmr (CDC1 ₃) δ (Hz)				
		ir	С <u>н</u> 2-Сн-Сн 1 2-1-1-2 -0 ОН N5	CH -CH-CH 2 - 2 -0 OH N<	$\begin{array}{c} CH_2 - CH - CH_1 \\ I & I & I \\ -0 & OH & N \\ \end{array}$		
Cpd	mp (°C)	v_{\max}^{CHC1} 3 (cm ⁻¹)	$CH_{1-2}^{*} - CH_{1-2}^{-}$ HO -O N	$\begin{array}{c} CH_{1} - CH_{-}CH_{-}CH_{1}\\ I & I & I \\ HO & -O & N \\ \end{array}$	CH ₂ -CH-CH 2 1 2 HO -O N<	ms m∕z (M ⁺)	
<u>6</u>	225-6 (HCl salt)	3370 (br)	3.84-4.25 (m)	3.84-4.25 (m)	2.6-3.1	402	
Z		3350 (br) 1615	3.9-4.3	3.9-4.3	3.28-3.85 (m)	444	
<u>8</u>	_	3350 (br) 1600	3.4-4.5	3.4-4.5	3.4-4.5	506	
2	—	3340 (br) 1592	3.86-4.22 (m)	3.86-4.22 (m)	3.25-3.73 (m)		
10		3400 (br) 1666	3.9-4.4	3.9-4.4	3.42 (d, J=4)	460	
<u>11</u>	169-9.5 (HCl salt)	3340 (br)	3.46 (d, J=4.5)*	4.57 (tt, J=4.5, 4.5)*	3.08 (d, J=4.5)*	402	
12		3400 (br) 1620	3.6-4.2*	4.48-4.78(m)*	3.49 (1H, dd, J=5, 20)*	444	
13		3405 (br) 1613	3.4-4.2*	4.77-5.08(m)*	3.4-4.2*	506	
14	154-5	3400 (br) 1600	3.5-3.8*	4.60-4.80(m)*	3.19 (1H, dd, J=6, 14)*	486	
15	_	3440 (br) 1680	3.5-4.2*	4.48-4.77(m)*	3.5-4.2*	460	
<u>16</u>	—	1724	4.20 (d, J=6)	5.25 (tt, J=6, 6)	2.92 (d, J=6)		
<u>17</u>	144.5-5	1748	3.9-4.3	4.31-4.96 (m)	3.44 (dd,J=8.5, 6) 3.63	428	
	110 5 1	2020 (1)		0 0 7 10 ()	(dd,J=8.5, 8.5))	
20	140.5-1	3330 (br) 1635	3.97-4.10 (m)	3.97-4.10 (m)	2.5-3.1		
<u>:6</u>	204-6 (HCl salt)	3375 (br)	3.93-4.27 (m)	3.93-4.27 (m)	2.2-2.8	428	
27	—	3330 (br) 1637	3.76-4.26 (m)	3.76-4.26 (m)	2.2-2.6	$(\frac{510}{508})$	
<u>8</u>	125.5-7	334 0 (br) 1644 .	3.74-4.04 (m)	3.74-4.04 (m)	2.6-3.2	(440 (438	
1		3370 (br)	3.3-3.8 (m)	3.3-3.8 (m)	2.9-3.3 (m)	402	

Received, 25th January, 1982

·