SELECTIVE CLEAVAGE OF UNSYMMETRICAL 2,2-SPIRO-1,3-DIOXOLANES III¹ CLEAVAGE OF 4-ISOPROPYLAMINOMETHYL-1,3-DIOXOLANES LINKED WITH BENZENE, THIOPHENE, FURAN, OR ISOXAZOLE ON THE C(2)-SPIRO ATOM

Makıko Sakaı Research Laboratories, Shionogi & Co., Ltd. Sagisu 5-12-14, Fukushimaku, Osaka 553, Japan

<u>Abstract</u> The dioxolanes $(\underline{1}-\underline{3} \text{ and } \underline{7}-\underline{11})$ were treated with stannic chloride and tertiary amine (triethylamine or tri-n-octylamine) and gave aromatic ethers $\underline{12}-\underline{14}$, enol-ethers $\underline{4}-\underline{6}$, and a bromo-enol-ether $\underline{15}$, respectively.

In part II of this series¹, preparation of 4-(2-hydroxy-3-isopropylaminopropoxy)-1-p-toluenesulfonylindole (tosyl-pindolol) from 5'-bromo-6',7'-dihydro-4-isopropylaminomethyl-1'-p-toluenesulfonyl-spiro[1,3-dioxolane-2,4'-(5H)-indole] by selective ring opening of the dioxolane ring and dehydrobromination with stannic chloride and tri-n-octylamine was reported. This report relates to similar reaction of the dioxolanes linked with benzene, thiophene, furan, or isoxazole.

Stannic chloride (1.2 mM) in 1,2-dichloroethane (1.5 ml) was added with stirring dropwise to 1,2-dichloroethane (1.0 ml) solution of the dioxolane 1-2(1.0 mM) and triethylamine (4 mM) at $-17\sim-20$ °C for 10 min. The reaction mixture was kept at -17 °C for 1 h, made alkaline with 5N sodium hydroxide, and extracted with ethyl acetate. The extract was washed with water, dried with anhydrous sodium sulfate, and concentrated under reduced pressure giving a crystalline residue. Recrystallization afforded pure compounds $\frac{4}{2}-\frac{6}{2}$ in 77, 88, and 91 % yields, respectively (Scheme 1). The structures of the products were determined to be enol-ethers having a secondary alcohol group from ir and nmr spectra.

-1277 -

Scheme 1

<u>7-11</u>

Similar ring-opening was observed for the bromodioxolanes 7-11 with stannic chloride (3.5 M equiv.) and tri-n-octylamine (5 M equiv.) as shown in Table 1. Table 1 Reaction of Dioxolanes 7-11 with Stannic Chloride and Tri-n-Octylamine

Dioxol-	, Ar	Yield (%) of ether ⁹			Recovery (%)
ane		Aromatic	Enol	Bromo-enol	of dioxolane
Z	$\langle \mathcal{Q} \rangle$	_	47 (<u>4</u>)	_	27
<u>8</u> 6	MeO	_	15 (<u>5</u>)	24 (<u>15</u>)	_
2 ¹	s	35 (<u>12</u>)	19 (<u>6</u>)	_	
<u>10</u> 7	COOMe	64 (<u>13</u>)			23
<u>11</u> 8	N Ph	31 (<u>14</u>)		_	43
Ar O Br	$\underbrace{ \begin{array}{c} H \\ N \end{array}}_{N} \underbrace{ \begin{array}{c} \operatorname{SnCl}_{4} \\ \operatorname{Oct}_{3} N \end{array}} $	HO H			Ar 0 H N H

Although the tetralin-dioxolane 7 gave the enol ether 4 (47 %) with recovery of the starting material 7 (27 \%), 6-methoxytetralin-dioxolane 8 afforded the enol ether 5 (15 \%) and a bromo-enol ether 15 (24 %). Dehydrogenation of the

12 - 14

4-6

<u>15</u>

enol ether $\underline{4}$ with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) gave the corresponding aromatic ether $\underline{16}$ (propranolol², known as a β -adrenergic blocking agent) (Scheme 2).

Scheme 2

On the other hand, the benzo[b]thiophene-dioxolane <u>9</u> gave the aromatic ether <u>12</u> (35 %) together with the corresponding enol ether <u>6</u> (19 %). Benzo[b]furandioxolane <u>10</u> or 1,2-benzisoxazole-dioxolane <u>11</u> yielded the respective aromatic ether <u>13</u> (64 %) or <u>14</u> (31 %) with higher recovery percentage of the starting material, 23 % or 43 %. It can be said that the dioxolane <u>9-11</u> linked with a fivemembered heteroaromatic ring gave the corresponding aromatic ether <u>12-14</u> as the main product, while those with benzene <u>7-8</u> afforded enol ether <u>4-5</u> and bromo-enol ether <u>15</u> without yielding any aromatic ether.

<u>Acknowledgement</u> The author thanks Drs. K. Igarashi, M. Fujimoto, and K. Shibata of Shionogi Research Laboratories for their helpful suggestions.

REFERENCES AND NOTES

- 1. Part I and Part II: M. Sakai, this journal, in press.
- 2. I. C. I., U.S. Patent 3,337,628 (1967).
- 3. The tetralin-dioxolane <u>1</u> was prepared from tetralone by ketalization (3-bromo-1,2-propanedio1/TsOH, 60 %) followed by amination with isopropylamine (69 %)¹. Pale yellow oil.
- 4. The 6-methoxytetralin-dioxolane <u>2</u> was prepared from 6-methoxytetralone by ketalization (epibromohydrin/SnCl₄, 88 %) followed by amination (1-PrNH₂, 96 %). Colorless oil.
- 5. The benzo[b]thiophene-dioxolane <u>3</u> was similarly prepared from 4,5,6,7-tetrahydrobenzo[b]thiophen-4-one as in <u>4</u> in 86 and 95 % yields, respectively. Colorless oil.
- The 2-bromo-6-methoxytetralin-dioxolane <u>8</u> was prepared from 2-bromo-6-methoxy-1-tetralone [T. R. Kasturi and T. Arunachalam, <u>Can. J. Chem.</u>, 1968, <u>46</u>, 3625],

by ketalization (3-bromo-1,2-propanedio1/TsOH, 75 %) followed by amination (with isopropylamine, 96 %). Pale yellow oil.

- 7. The benzo[b]furan-dioxolane <u>10</u> was prepared from 5'-bromo-4-bromomethy1-6',7'dihydro-3'-methoxycarbonyl-spiro[1,3-dioxolane-2,4'-(5'H)-benzo[b]furan]¹ with isopropylamine. Yield of colorless crystalline product: 71 %.
- 8. The isoxazole dioxolane <u>11</u> was prepared from 5-bromo-3-pheny1-4,5,6,7-tetrahydro-1,2-benzisoxazol-4-one (I. Adachi, Y. Hiramatsu, M. Yamamoto, and T. Yamamori: Abstract Papers of the 101st Annual Meeting of the Pharmaceutical Society of Japan, p. 421, in Kumamoto, 1981) by ketalization (3-bromo-1,2propanediol/TsOH in benzene, 98 %) followed by aminolysis with isopropylamine (67 %). Colorless oil.

Compd.		ır v ^{KBr} cm ⁻¹	l H-nmr		
	mp (°C)		С <u>Н</u> 2 ^{-С<u>Н</u>-СН 1⁻²1⁻1⁻1² -0 ОН N<}	$-C = C - \underline{H}$ i $-C = C - \underline{H}$ i $-O CH_2 - CH_2 -$	$\frac{\text{ms m/z}}{(\text{M}^+)}$
<u>4</u>	68-9	3310, 1646	3.72-4.31 (m)	4.96 (dd, J=4.5, 4.5)	261
<u>5</u>	84-5	3280, 1646	3.70-4.18 (m)	4.92 (dd, J=4.5, 4.5)	291
<u>6</u>	75-6	3315, 1637	3.74-4.13 (m)	4.70 (dd, J=4.5, 4.5)	267
<u>12</u>	86.5-7	3290	4.00-4.34 (m)	—	265
<u>13</u>	115.5-6.5	3280, 1743	3.93-4.46 (m)		307
<u>14</u>	110-1	3320	3.75-4.13 (m)	—	326
<u>15</u>	76-7	3280, 1642	3.73-4.24 (m)	—	(³⁶⁹ 371

Received, 25th January, 1982