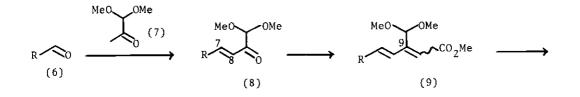
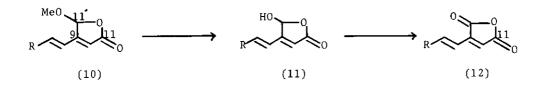
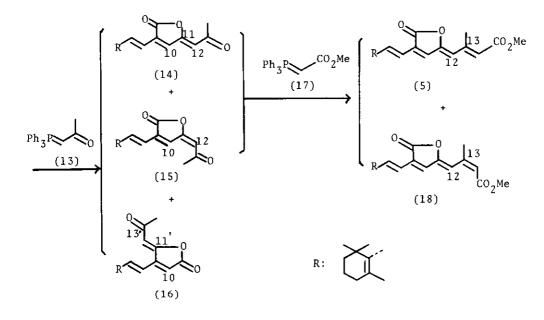
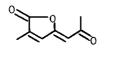

THE SYNTHESIS AND CHARACTERISATIONS OF RETINOIDAL 4-YLIDENEBUTENOLIDES


Masayoshi Ito, Tsutomu Iwata, and Kiyoshi Tsukida Kobe Women's College of Pharmacy, Motoyamakitamachi, Higashinada, Kobe 658, Japan


<u>Abstract</u> — Retinoidal 4-ylidenebutenolides [(5) and (18)] have been synthesised and their spectral characterisations have been described.


4-Ylidenebutenolides (1) occur widely in nature and many of them are known to possess a wide range of biological activities. The chemistry of natural 4-ylidenebutenolides has been well reviewed by Pattenden¹ and Yamamoto.² Although a number of methods for the synthesis of 4-ylidenebutenolides have been presented, there has been so far reported no synthetic pathway for natural 4-ylidenebutenolides (2) displaying extended conjugation at C-2 position such as peridinin (3)³ and tetrenolin (4).⁴ As an extension of the synthetic work⁵ to develop the new antitumour retinoids, we have been interested in the preparation of the retinoidal 4-ylidenebutenolide (5).⁶ In this communication, we describe the first synthesis of the retinoidal 4-ylidenebutenolides (5) and (18) and their spectral characterisations.



The aldol condensation (piperidine/MeOH) between $\beta\text{-cyclocitral}$ (6) 7 and pyruvic aldehyde dimethylacetal (7) gave the trans acetal-dienone (8) [δ^8 7.59 (d,J=16,7-H), 6.46(d,J=16,8-H) in 60% yield which was condensed with diethyl methoxycarbonylmethylphosphonate in the presence of n-butyl-lithium to afford a mixture (9) of the β -ionylidene ester derivatives [9-cis : 9-trans⁹ = ca. 1 : 7 by HPLC] in 94% yield. The mixture was treated with 15% H_2SO_A in MeOH to provide a methoxy-lactone (10) in 68% yield. The structure of this product was confirmed by its spectral data [λ 258, 319 nm; ν 1755, 1612 cm¹; δ 6.90(d,J=16,7-H), 6.32 (d,J=16,8-H), 6.04(s,11'-H), 5.91(s,10-H), 3.50(s,OMe)]. Hydrolysis of the methoxy-lactone (10) with 30% H₂SO₄ in dioxan and subsequent PCC-oxidation of the resulting hydroxy-lactone (11) led to the unstable conjugated anhydride (12) $[v \ 1840, \ 1765 \ cm^{1}]$ in ca. 60% yield which, without purification, was condensed with the phosphorane $(13)^{10}$ in dry benzene under argon to yield a mixture of the conjugated ylidenebutenolides (14)(10%), (15)(24.5%), and (16)(8.2%). The isomers (14), (15), and (16) were clearly separated by preparative TLC $[SiO_2/benzene and$ n-hexane:ether(3:2)] and fully characterised by their spectral data (Table 1) respectively. The regioselectivity of this condensation reaction is in favour of carbanion attack at the less hindered carbonyl function (C-11) in the anhydride (10). The two isomers (14) and (15) were interconverted by heating or TLC treatment.¹¹ The lactonic carbonyl absorptions of the compounds (14) and (15) were shifted to the higher frequency by the effect of exocyclic double bond in the 4-ylidenebutenolide structure (2) compared with those $[1740-1760 \text{ cm}^{-1}]$ of the normal α,β -unsaturated γ -lactone ring. In the NMR data of the compounds (14) and (15), the proton signals at C-10 and C-12 were in good agreement with those at the corresponding positions in the model compounds (19) and (20).^{12, 13} Therefore, extention of conjugation at the C-2 position in the 4-ylidenebutenolide ring (2) had little effect on the chemical shifts at C-10 and C-12 positions in the ylidenebutenolides (14) and (15). Stereochemistry around the newly formed Δ^{11} double bond was determined as shown in the Fig. 2 from both the chemical shift difference of C-13-methyl signals and that of C-10-olefinic proton signals in the two isomers (14) and (15). The Wittig reaction of the keto-butenolide (14) with the phosphorane $(17)^{14}$ in a sealed bottle under argon produced a mixture of the retinoidal 4-ylidenebutenolides (5)(25.1%) and (18)(14.0%) which was separated by preparative TLC [SiO $_2$ /benzene]. The same reaction of the isomeric keto-

(19)

Fig. 2

Table 1	Spec	tral data	of the keto-	butenolides ((14)-(16)
			(14)	(15)	(16)
	UV	$\lambda_{\max}^{\texttt{EtOH}}$	330 nm	335 nm	293 nm
	IR	v ^{CHC1} 3	1790	1787	1785
			1665	1686	1665
			1620 cm^1	1602 cm^{1}	1643
					1610 $c\bar{m}^1$
	NMR	$\delta_{\mathrm{ppm}}^{\mathrm{CDC1}_{3}}$			
		10-H	7.08 (s)	7.93 (s)	6.32 (s)
		12-H	5.51 (s)	6.14 (s)	-
		12'-H	-	-	5.72 (s)
		13-CH ₃	2.56 (s)	2.33 (s)	-
		13'-CH ₃	-	-	2.59 (s)
Table 2	Spectral data of the retinoidal 4-ylidenebutenolides (5) and (18)				
			(5)	(18)	
	UV	λ_{\max}^{EtOH}	356 nm	356 nm	
	IR	$v^{CHC1}3$	1770	1775	
			1765	1760	
			1712	1700	
			1600 cm^1	1598 cm^{1}	L
	NMR	δ ^{CDC1} 3 ppm			
			1.07 (s)	1.07 (s))
		5-CH ₃	1.77 (s)	1.77 (s)	
		13-68-	2.35 (S)	2.32 (s)	
			3.73 (s)	3.72 (s)	
		14-H	5.57 (s)	5.77 (s)	
			6.04 (s)	7.32 (s)	
			6.22 (d, J=1		
			7.00 (s)	7.09 (s)	
		7 - H	7.38 (d, J=1)	6) 7.37 (d,	J=16)

butenolide (15) also led to a mixture of (5)(16.8%) and (18)(9.5%). Characteristic spectral data of the retinoidal 4-ylidenebutenolides (5) and (18) are summarised in Table 2. Stereochemistry of the Δ^{13} -double bond was determined from the follow-

ing NMR data. The methyl signal at C-13 in the 13-*trans* isomer (5) is extremely deshielded by the effect of both enolic oxygen in the butenolide ring and the carbonyl group of ester. The proton signal at C-12 in the 13-*cis* isomer (18) is also deshielded by the anisotropic effect of the carbonyl group of ester. The biological activities of the retinoidal 4-ylidenebutenolides prepared here are now under investigation. The present synthetic route could be expected to extend to the studies towards the synthesis of the 4-ylidenebutenolide (2).

REFERENCES AND FOOTNOTE

- 1. G. Pattenden, Fortschr. Chem. Org. Naturst., 1978, 35, 133.
- 2. M. Yamamoto, J. Synth. Org. Chem. Japan, 1981, 39, 25.
- 3. J. E. Johansen, S. Liaaen-Jensen, and G. Borch, <u>Marine Natural Products</u> <u>Chemistry</u>, edited by D. J. Faulkner and W. H. Fenical, Plenum Press, p. 225 (1977) and references therein.
- G. G. Gallo, C. Coronelli, A. Vigevani, and G. C. Lancini, <u>Tetrahedron</u>, 1969, <u>25</u>, 5677.
- 5. M. Ito, M. Ohno, E. Takano, Y. Oda, and K. Tsukida, Heterocycles, 1979, 12, 505.
- We have employed the numbering system used in the retinoids and carotenoids fields.
- 7. N. Müller and W. Hoffmann, Synthesis, 1975, 781.
- 8. NMR spectra were determined on a 200 MHz superconducting FT-NMR spectrometer using CDCl_{z} solutions.
- 9. Geometrical isomerism is expressed on the basis of the retinoidal polyene chain.
- 10. F. Ramirez and S. Dershowitz, J. Org. Chem., 1957, 22, 41.
- 11. Heating or TLC treatment led to an equilibrium mixture (ca. 1 : 1) of (14) and (15).
- 12. C. F. Ingham, R. A. Massy-Westropp, G. D. Reynolds, and W. D. Thorpe, Aust. J. Chem., 1975, 28, 2499.
- T. Kitamura, Y. Kawakami, T. Imagawa, and M. Kawanishi, <u>Tetrahedron</u>, 1980, <u>36</u>, 1183.
- O. Isler, H. Gutmann, M. Montavon, R. Rüegg, G. Ryser, and P. Zeller, <u>Helv. Chim. Acta</u>, 1957, <u>40</u>, 1242.

Received, 18th March, 1982