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Abstract Benzylidene(cyano}benzylamine reacted as an azomethine ylide
with DMAD and olefinic dipolarophiles. In most cases, however, the products
derived from the initially formed [3 + 2] cycloadducts with the elimination

of hydrogen cyanide were obtained.

Recently, imines of oa-amino acid esters have been found to undergo 1,3-dipolar cycloadditions via

their 1,3-dipalar tautomers, azomethine y]ides]'7. An imine bearing electron-withdrawing cyano

group in pltace of an ester group might be also expected to behave as a 1,3-dipole via tautomerism.
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In the present communication we wish to report 1,3-dipolar cycloaddition reactions of benzylidene-

X=ester, CN

(cyano)benzylamine 1.
A solution of equimolar amounts of the imine 1_8 and dimethyl acetylenedicarboxylate {DMAD) in tolu-
ene was reftuxed for 3 h. The reaction mixture was then concentrated in vacuo to leave a residue,

which was purified by chromatography on silica gel using chloroform as an eluent to give a 52%

yield of the pyrrole 2, mp 131-133%C, as colorless prisms: IR (KBr) 3300, 1720, 1700 cm']; NMR
{CDCY3) & 3.75 (6H, s}, 7.30-7.65 (10H, m}, 8.85 {1H, broad, NH); MS m/e 305 (M").
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Scheme 1
The pathway for the formation of 2 is outlined in Scheme 1. 1In a similar manner as imines of «-

amino acid esters, the imine 1 undergoes a 1,3-dipolar cycloaddition reaction with OMAD via its
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tautomer to yield initial [3 + 2] cycloadduct(s) A. Subsequent elimination of hydrogen cyanide of
A, followed by aromatization, gives final product 2.

Next, the reaction of 1 with olefinic dipolarophiles was investigated under similar conditions.

The imine 1 reacted with n-{p-nitrophenyl)maleimide in refluxing toluene for 3 h to give a mixture
of four products, 3. 4, 5, and 6, together with recovery of the maleimide. On the basis of
spectral data, the major products 3 and 4 were assigned as sterepisomeric 1-pyrrolines arising from
initially formed [3 + 21 cycloadduct(s) with the elimination of hydrogen cyanide. On the other

hand, the minor products 5 and § were deduced to be an ene-reaction product and Michael adduct re-
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Schemne 2
spective]yg, which were unchanged even when heated in refluxing toluene for a long time (Scheme 2).

T, NMR (CDC13) & 4.20 (1H, dd, Ba-H, 3=9.0,

3 mp 265-2660(2; colorless needles; IR (KBr) 1720 cm”
9.0 Hz), 4.90 (1H, d, 2a-H, J=9.0 Hz), 6.156 (1H, d, 6-H, J=9.0 Hz), 6.90-8.40 (14H, m}; MS m/e 411
(M+). 4: mp 239-241%C; colorless prisms; IR (KBr) 1720 cm'i; NMR (CDC13) & 3.85 {1H, dd, 5a-H,
J=3.0, 9.0 Hz), 4.95 (1H, dd, 2a-H, J=3.0, 9.0 Hz}, 5.90 {1d, dd, 6-H, J=3.0, 3.0 Hz), 7.30-8.45
(144, m); MS m/e 411 (M7).

The stereochemistry of 3 (2a-H, 5a-H—cis—5a-H, 6-H—trans) and 4 (2a-H, Sa-H, 6-H—all cis) was
deduced on the basis of NMR data; the long-range coupling between 2a-H and 6-H was observed in 4,
but not in 3.

The imine 1 reacted with dimethyl fumarate in refluxing benzene to give a mixture of the pyrroli-
dine 7, mp 131—1330(2, and 1-pyrroline 8, mp TOG-]O?DC, whereas the reaction of 1 with dimethyl
maleate under similar conditions afforded 8 as the sole product (Scheme 3).

7: IR (KBr) 2350, 2230, 1740 cm™'; NMR {CD3CN) & 3.06, 3.62 (each 3, s), 3.56 (IH, broad, NH, ex-

—1412—




HETEROCYCLES, Vol 19 No 8, 1982

E H E H
. . HyeoE  _reflux Hel L.E He—'E
- E“7 T~H in benzene, 3 h Phuds 1 A.wPh Phe y
HOSN KO\WZ Fh
H CN
7 8
E=COMe 25 % 23 %

H~C=c,H reflux

1 +
= E” ~E in benzene L
3h 33 %
10 h 72 %
Scheme 3

changed with D»0), 3.80-4.05 (2H, m, 3-H, 4-H), 5.00 (1H, m, 5-H, changed to dd (J=6.0, 3.0 Hz)
when treated with D50), 7.30-8.10 (10H, m}; M5 m/e 337 {(M" - HCN). 8: IR {KBr) 1750 cm_1; NMR
(CDC13) & 3.14, 3.70 {each 3H, s}, 4.00 {1H, dd, 4-H, J=9.0, 5.0 Hz), 4.92 (1H, dd, 3-H, J=5.0,

2.0 Hz), 5.95 (1H, dd, 5-H, J=9.0, 2.0 Hz), 7.20-8.20 (10H, m}; MS m/e 337 (M+).

The stereochemistry of 7 (2-phenyl, 3-H—trans—3-H, 4-H—trans—4-H, 5-H—trans) and 8 (3-H, 4-H—
trans—4-H, 5-H—trans) was based on the NMR data. In both 7 and 8 the long-range coupling between
3-H and 5-H was observed, indicating that 3-H and 5-H are cis. An argument for the cis-relations
of 2-, 5-phenyl and 3-methoxycarbonyl in 7, and of 5-pheny) and 3-methoxycarbonyl in 8 are provided
by the unusually low 8-values for the 3-methoxycarbonyls compared with those at the 4-position, re-
spectively.

The pyrrolidine 7 was unchanged even on heating in benzene under reflux for a Tong time; this im-

plies that 8 was derived from the elimination of hydrogen cyanide of other initial cycloadduct(s)

than 7. We now wish to postulate the pathways for the formation of 7 and 8 as shown in Scheme 4.
In analogy with the cycloadditions of imines of m-amino acid esters, it is reasonable to assume
that the reaction proceeds via a concerted T,3-dipolar cycloaddition of an azomethine ylide B or C,
generated from a prototropy of 1, to the fumarate or maleate.

Among four transition states leading to cycloadducts between 1 and the fumarate, D or E has more
preferable geometry than otherslo. The compound 7 evidently forms from D. As mentioned above, 7
did not undergo dehydrocyanation; this suggests that in pyrrolidine derivatives dehydrocyanation
does not occur between neighboring MH and cyano groups. It can thus be presumed that 8 forms via
an anti-elimination of hydrogen cyanide from initial cycloadduct F, which derived through E, to
yield 2-pyrroline G, followed by a hydrogen shift, On the other hand, H has the most favorable
geometry among the transition states leading to cycloadducts between 1 and the ma]eate11. A cyclo-
adduct I derived from H undergoes anti-elimination of hydrogen cyanide to yield G, which gives 8.

Study on intramolecular cycloaddition reactions of benzylidene(cyanao)benzylamines is in progress.
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