A SYNTHESIS OF N-(4'-QUINAZOLON-3'-YL)-2-PYRIDINECARBOXAMIDINES AND THEIR CONVERSION INTO 1,2,4-TRIAZOLES

Katsuhiko Nagahara* and Atsushi Takada School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

<u>Abstract</u> --- Treatment of N-(2'-aminobenzoy1)-2-pyridylamidrazone (1) with ethoxymethylenemalononitrile (EMMN) and ethyl ethoxymethylenecyanoacetate (EMCA) or ortho esters afforded the corresponding N-(2'-alky1-4'-quinazolon-3'-y1)-2-pyridinecarboxamidines (2). Futhermore, treatment of 2 with ethanolic hydrochloric acid caused the ring transformation to give corresponding 5-alky1-3-(2'-pyridy1)-1H-1,2,4-triazoles (3).

We have recently described that the acid hydrolysis of 3-hydroxyiminoacyl-4-quinazolones gives the corresponding 3,5-diaryl-1,2,4-oxadiazoles derivatives by ring transformation.¹ We now report the syntheses of N-(2'-alkyl-4'-quinazolon-3'-yl)-2-pyridinecarboxamidines (2) by the reaction of N-(2'-aminobenzoyl)-2-pyridylamidrazone (1)² with ethoxymethylenemalononitrile (EMMN) and ethyl ethoxymethylenecyanoacetate (EMCA) or ortho esters as well as a new ring transformation of 2 to 5-alkyl-3-(2'-pyridyl)-1H-1,2,4-triazoles (3). Heating of 1 (0.006 mol) with an equivalent amount of EMMN and EMCA in ethanol

(70 ml) under reflux for 2 h afforded N-substituted 3,4-dihydro-4-oxoquinazoline derivatives in good yields, which were previously unknown, i.e., N-(4'-quinazolon-3'-y1)-2-pyridinecarboxamidine (2a). Similarly, the treament of 1 (0.01 mol) with ortho esters (triethyl orthoformate, triethyl orthoacetate or triethyl orthopropionate)(50 ml) at 160-170°C for 8 h gave the corresponding N-(2'-alkyl-4'quinazolon-3'-y1)-2-pyridinecarboxamidines (2a-c) in good yields. The structure of 2a,b,c was established on the basis of their IR, NMR, mass spectral, and elemental analytical data (Table I, II),³

<u>Chart 1</u>

Next, refluxing of (2a-c)(0.004 mol) with a mixture of 15% hydrochloric acid (50 ml) and ethanol (50 ml) for 8 h afforded 3a-c.⁴⁾

Compd: No	^s R	Mp ^{a)} Yi (°C) (eld IF %) vN-H	tv ^{KBr} (cπ wC=0 ν	1 ⁻¹) C=N νC=C	Formula	Ana ((1 C	alysis(% Calcd. Found) H	k) N	MS (m/e) M ⁺
2a	н	227-229 7 6 7	0 ^{b)} 3400 1 ^{c)} 3300 1 ^{d)}	1680 1 1660	630 1590	C ₁₄ H ₁₁ N ₅ O	63.38 (63.17)	4.18 (4.28) (1	26.40 26.19)	265
2b	СН _З	206-208 4	1 3380 3240 3200	1660 1	615 1580	C ₁₅ H ₁₃ N ₅ O	64.50 (64.34)	4.65 ((4.59) (25.08 25.09)	279
2c	с ₂ н ₅	203-205 7	4 3380 3280 3240	1670 1	625 1590	с ₁₆ н ₁₅ n ₅ 0	65.51 (65.69)	5.15 (5.19) (1	2 3.8 8 24.04)	293
c	:) Fr	om EMCA. Table II	d) Fro ¹ H-NMR	om Triet data (I	hyl Ortho DMSO-d ₆ ,	oformate. ppm) of c	ompound	s 2-3.		
Compo No	ls	R _{NH} a)	Н	CH3	C ₂ H ₅	2	3	4	5	$5 \int_{N}^{3} \frac{3}{2}$
2a		Н 7.50	8.16							
2b	C	(2H, s) H ₃ 7.43 (2H, s)	(IH, s)	2.40 (3H, s))					
2c	c _z	H ₅ 7.43 (2H, s)			1.26 (3H, t) 2.73 (2H, q)					
3a		H 14.63	8.30		(5, 4)	8.73	7.50	7.93	8.	13
3b	C	(1H, s) H ₃ 13.30 (1H, br)	(1H, s)	2.33 (3H, s))	(1H, m) 8.66 (1H, m)	(1H; m) 7.43 (1H, m)	(1H, m 7.86 (1H, m) (1H, 8.) (1H,	m) O3 m)
3c	c _z	H ₅ 14.16 (1H, br))		1.30 (3H, t)	8.73 (1H, m)	7.46 (1H, m)	7.90 (1H, m	8.) (1H,	10 m)

Table I N-(4'-quinazolon-3'-y1)-2-pyridinecarboxamidines $\binom{2}{2}$

a) These signals disappeared on addition of $\mathrm{D}_2\mathrm{O}.$

-1567-

The ring transformation of $\frac{2}{3}$ to $\frac{3}{3}$ probably proceeds by initial hydrolysis of the pyrimidine moiety and subsequent dehydration of the resultant acylamidrazones (Chart 2).

Table III 5-Alky1-3-(2'-pyridy1)-1H-1,2,4-triazoles (3)

Compds.	D	Recryst. solvent	Mp(°C)	Yield (%)	IRv _{max} (cm ⁻¹)		MS
No	ĸ				vN-H	vC=N	M ⁺
3a	Н	Benzene	166-167	50	3440	1600	146
3b	сн _з	Benzene	169-171	51	3400	1590	160
3c	C ₂ H ₅	Carbon Tetrachlorid	153-155 e	71	3440	1590	174

ACKNOWLEDGMENT

1

The authors wish to thank Misses. Misa Tazawa and Chikako Kobayashi, the students of Kitasato University, for their skilled technical assistance.

REFERENCES AND NOTES

- 1. K.Nagahara and A.Takada, <u>Heterocycles</u>, 1979, 12, 239.
- 2. M.Takahashi, S.Onizawa, and T.Satoh, Bull. Chem. Soc. Japn., 1974, 47, 2724.
- 3. The structure of 2 was assigned on the basis of NMR spectral data of 1. The NMR spectrum (DMSO-d₆) of 1 shows singlets at $\delta 6.15(2H; \text{ aromatic amine})$, 6.87 (2H; amidine amine), and 10.00 ppm(1H; amide amine).
- 4. The structures of 3a-c were confirmed by the spectral data and elemental analyses.

Received, 19th January, 1982