
STUDIES ON <u>as</u>-TRIAZINE DERIVATIVES. III.¹ PREPARATION OF 3-ALKENYL-1,2,4-TRIAZINE DERIVATIVES BY MEANS OF WITTIG REACTION

Shoetsu Konno, Etsuko Takaharu, Yuichi Aizawa and Hiroshi Yamanaka* Pharmaceutical Institute, Tohoku University Aobayama, Sendai 980, Japan

<u>Abstract</u>——The reaction of 3-trichloromethyl-5,6-diphenyl-1,2,4triazine with triphenylphosphine proceeded reductively, and α -(3-(5,6-diphenyl-1,2,4-triazinyl)) methylenetriphenylphosphorane was obtained as stable, yellow prisms. The phosphorane smoothly reacted with various aldehydes in boiling benzene to give the corresponding 3-alkenyl compounds, whereas the reaction with ketones failed to give any significant products under the same conditions.

As reported in the preceding paper¹, 3-methyl-5,6-diphenyl-<u>as</u>-triazine (<u>3</u>) was found to be smoothly chlorinated to 3-trichloromethyl-5,6-diphenyl-<u>as</u>-triazine (<u>4</u>) by treatment with chlorine gas in acetic acid in the presence of sodium acetate. Recently, Kato et al. reported² that 4-trichloromethylpyrimidines (<u>1</u>) reacted with two equivalent amounts of triphenylphosphine to give chloropyrimidinylmethylenetriphenylphosphorane, which underwent the Wittig reaction with aldehydes to afford the corresponding 4-chloroethenylpyrimidines (<u>2</u>).

These findings stimulated us to apply such kind of reactions to the field of <u>as</u>-triazine chemistry, because the synthesis of <u>as</u>-triazine derivatives having an unsaturated side chain is considered to be difficult by ring-closure reactions.³ In the present paper we describe the reaction of $\underline{4}$ with triphenylphosphine and the condensation of the resultant phosphorane with carbonyl compounds.

On treatment with two molecular amounts of triphenylphosphine in dry benzene under nitrogen, <u>4</u> was transformed into α -(5,6-diphenyl-3-<u>as</u>-triazinyl)methylenetriphenylphosphorane (<u>5</u>), mp 214-215°C(decomp.), orange yellow needles, in 46 % yield. The elemental analysis ($C_{34}H_{26}N_3P$) and MS (m/e 507) clearly demonstrated the product (<u>5</u>) to contain no chlorine atom. Reaction conditions for the preparation of <u>5</u> were investigated and the improved yield of the product was obtained by treatment with excess triphenylphosphine at room temperature under nitrogen as shown in Table 1. 3-Dichloromethyl-5,6-diphenyl-<u>as</u>-triazine (<u>7</u>), obtained by the reduction of <u>4</u> with tin in conc. hydrochloric acid¹, was unchanged by treatment with triphenylphosphine under the same conditions. Accordingly, the formation of <u>5</u> is reasonably speculated to result from the reduction of α -chloro- α -(5,6-diphenyl-3-<u>as</u>-triazinyl)methylenetriphenylphosphorane (<u>8</u>) with triphenylphosphine, although the isolation of the intermediate (<u>8</u>) was unsuccessful.

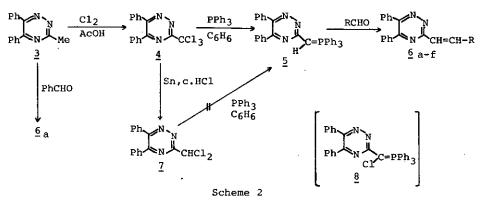


Table 1. Reaction Conditions for the Preparation of <u>as</u>-Triazinylmethylenetriphenylphosphorane (5)

	Molar Ratio		Reaction Conditions ^{a)}		Yield of 5
Run	<u>as</u> -Triazine	$^{\rm PPh}3$	Temp.		(용)
1	1	2	room temp.	12	46
2	1	. 2	reflux	. 2	30
3	1	3	room temp.	12	59
4	1	3	reflux	2	66
5	1	4.5	room temp.	12	82
6	1	4.5	room temp.	. 72	86
7	1	4.5	reflux	2	79

a) The reactions were carried out in dry benzene under nitrogen,

-1870 -

Next, the condensation of 5 with carbonyl compounds was investigated. As shown in Table 2, the phosphorane (5) smoothly reacted with various aldehydes in dry benzene under reflux to give the corresponding <u>as</u>-triazinylolefins (<u>6</u>a-f), in satisfactory yields. However, the reaction of <u>5</u> with ketones such as cyclohexanone and acetophenone failed to give the expected products.

Compd. No.	R	mp (°C)	Yield	(%) $\frac{1_{H-NMR}}{J_{CH=CH}(Hz)}$	Type of Stereoisomer
<u>6</u> a	Ph	145-146	70	16	E-form
<u>6</u> b	PhCH≃CH	142-144	78	-	-
<u>6</u> c	MeCH=CH	146-147	62	_	-
<u>6</u> d	Me	82-84	73	16	E-form
<u>6</u> e	$Me(CH_2)_2$	75-76	75	16	E-form
<u>6</u> f	Me (CH ₂) 3	150 ^{a)}	37	16	E-form

Table 2. Preparation of as-Triazinylolefins (6a-f)

a) bp (°C) (3mmHg)

The methyl group at the 3-position of $\underline{3}$, like that of 2-methylpyrimidines and 2methylpyridines, is supposed to be reactive toward Knoevenagel type condensation. In fact, the reaction of $\underline{3}$ with benzaldehyde under basic conditions resulted in the formation of 5,6-diphenyl-3-stylyl-<u>as</u>-triazine, mp 145-146.5°C, which was identical with <u>6</u>a.

In spite of this fact, the condensation of $\underline{3}$ with aliphatic aldehyde under basic conditions was unsuccessful. Therefore, the reaction of $\underline{5}$ with aldehydes may provide one of practical methods for the introduction of an alkenyl group into the 3-position of as-triazine ring.

Typical experiments are as follows: $\alpha - (5, 6-\text{Diphenyl-3-as-triazinyl})$ methylenetriphenylphosphorane (5) — A solution of PPh₃ (3.5 g, 13.5 mmol) in dry benzene (10 ml) was added dropwise to a solution of 3-trichloromethyl-5,6-diphenyl-<u>as</u>triazine (<u>4</u>) (1.05 g, 3 mmol) in dry benzene (50 ml) under nitrogen. After stirring at room temperature for 72 h under nitrogen, the mixture was poured into water. The aqueous layer was separated and the benzene layer was extracted with 1 % HCl solution (16 ml) for three times. The combined aqueous solution was washed with benzene and made alkaline with K₂CO₃. The separated red oil was extracted with $CHCl_3$ and the extract was dried over Na_2SO_4 . After removal of the solvent, the residue was recrystallized from AcOEt to give 1.3 g (86 %) of 5, mp 214-215°C(decomp.), as red prisms. General procedure for the preparation of astriazinylolefins (6a-f)⁴ — Aldehyde (2.2 mmol) was dissolved in dry benzene (20 ml) and 5 (1.01 g, 2 mmol) was added thereto. The mixture was heated under reflux for 2.5 h and then concentrated to dryness in vacuo. The residue was purified by chromatography on a silica gel column, and then recrystallized to give as-triazinylolefins (6a-f). In the case of 6d, the reaction was carried out under ice-cooling for 12 h.

REFERENCES AND NOTES

- 1. Part 2: S. Konno, M. Yokoyama and H. Yamanaka, <u>Heterocycles</u>, 1982, 19, 1865.
- T. Kato, N. Katagiri, T. Takahashi and Y. Katagiri, J. <u>Heterocyclic Chem.</u>, 1979, <u>16</u>, 1575.
- 3. One of the convenient method for the preparation of 3-substituted <u>as</u>-triazines is the reaction of amidrazones with 1,2-dicarbonyl compounds, and the other is the cyclization of the acyl hydrazones of 1,2-dicarbonyl compounds with ammonia, (H.Neunhoeffer and P. W. Wiley, "Chemistry of 1,2,3-Triazines and 1,2,4-Triazines, Tetrazines and Pentazines" in "The Chemistry of Heterocyclic Compounds" eds. by A. Weissberger and E. C. Taylor, Wiley-Interscience, New York, 1978, p 191).
- 4. All the compounds gave IR, ¹H-NMR and elemental analyses consistent with the proposed structures.

Received, 7th July, 1982