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A CONVENIENT SYNTHESIS OF 6-METHYLELLIPTICINE AND 6~METHYLOLIVACINE

Martin J. Wanner, Gerrit-Jan Koomen and Upendra K. Pandit*
Lakoratory of Organic Chemistry, University of Amsterdam,

Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.

Abstract — Readily accessible ll-ketopyrido[4,3-b]carbazole
derivatives 3a,b have been used as central intermediates for the

synthesis of 6-methylellipticine and 6-methylolivacine,

Considerable interest centres arcund the pyridocarbazole alkaloids ellipticine and

la=-a

olivacine, in view of their reported antitumour activity . Although a number of

syntheses for these alkaloids have been reported to c‘lateza_e

, a convenient approach
to the parent compounds and their derivatives, starting from readily available mate-
rials, has been lacking. In this communication we present the synthesis of both 6-
methylellipticine (1) and 6é-methylolivacine (2) via a general synthesis of the
pyridocarbazole skeleton which has been reported by us earlier3.
As a part of a broader study of the application of the reaction of ester a-anions
with N-alkylated nicotinic acid derivatives to the synthesis of polynuclear hetero-
cycles, we have recently reported the syntheses of d,l—sesbanlne4 and the pyrido-
carbazole derivative §§3. The conversion of 3a to the corresponding ellipticine
derivative 1 and the preparation of the analogous precursor (3b), and its trans-
formation to the related olivacine system (2), constituted worthwhile synthetic
targets.

The conversion of 3a to 1 could be achieved via two routes (Scheme A}, Reaction of
3a with CH3MgI {excess, THF, reflux) led directly to the formation of 6-methyl-
ellipticine (40%) in one practical step. The reaction presumably proceeds via in=-
termediate 4, which undergoes a fragmentation, involving loss of eOMgI, mediated
by attack of the Grignard reagent {(exXcess) on the ester carbonyl. An alternate
mechanism could involve an analogous fragmentation of a lactone, formed by intra-

molecular reaction between the incipient alkoxide anion - generated by initial

Grignard attack - and the ester group.

— 2295 —




—962¢ —

@mﬁ?@ @1)?3 ol

Me Me COOEt Me Me COOEt Me Me COOEL
5 3a R=H S
3b R=Me
l (b) l(c) l
B Me. OMgI
N
O
N
Mg Me 'COOEt
1 - 4 - 2

(@) PhyP=CH, , THF, 20°; (b) KOH, EtOH/ H,0,4 ; (c) MeMgI , (excess) THF A :
(d) REDAL ,THF, r

Scheme A




HETERQCYCLES, Vol 19, No 12, 1982

g 2W24yoS

Pd fEH (1) 1 NOSHD | 2prwioiq wniuiptionjAzu2g-N (4) ¢ YL TV
‘NE13(6) | uw OE 011 * 4AEHOUd (4) T uiw 0Z ' 0Lt- 091 "2uDjonns (2)

8
13000 2KW o_s_

e — é_z @ LI
() &/\QO "(6)"(4)
25N O

L 9
13002 2K

13000 u__z I
i s&f_\U@
H -— + H
LI

2 0

—

— 2297 —



The second route involved the treatment of 3a with Ph3P=CH2 {2 eq.), whereupon the
exo-methylene derivative 5 was cbtained in good yield (65%). Hydrolysis of §
(KOH/EtOH/H,0, reflux) cleanly yielded 1 as a crystalline compound, m.p. 211-212°

(60%) . Relevant spectral data on §5 and 16

attested to their structures. It should
be emphasized that both routes are capable of variation and that 3a can serve as a
central intermediate for the synthesis of diverse ellipticine analogues.

The 6-methylolivacine precursor (3b) was prepared via the sequence of reactions
described in Scheme B. Thas seguence starts with the known indeolylpropionic ester
6 {(Scheme B) and follows the steps & -~ 7+ 8 - 3b, in a manner analogous to that
described previcusly for the synthesis of 3a. The only difference is represented by
the use of 2-methylnicotinyl chloride hydrochloride, in place of the nicotinyl
chloride hydrochloride salt. The structures of intermediates 7 and 8, and compound
3b (m.p. 165-167°), were assigned on the basis of their spectral dataT. The keto
ester 3b was converted to 2 (57%}, 1in cne practical step, by reaction with excess
of RedAl. It is assumed that a hydroxy compound (9) 1s initially formed, which is
further reduced and decomposed (perhaps via a lactone) to 2 under the reacticn
conditions. The product 2 is a crystalline compound, m.p. 228-229°, which exhibited
1

H NMR spectral data8 consistent with the assigned structure.

The scope of the conversion of intermediates of type 3 to ellipticine and olivacine

derivatives is being actively investigated.
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5. 5: Unstable o1l (65%); IR (CHC1,): 1725, 1615, 1590 em . 'HNMR (CDC1,): 6 1.08
{(t, J=7, CHj); 1.90 (s, CHy); 3.67 (s, N-CHy); 4.12 (m, CHy): 5.98 (s,=CH);

6.02 (s, =CH); 7.3-7.5 (m, H); 8.08 (4, J=8, ClO-H); 8.53 (d, J=6,

C4,7,8 ana 9~
Cy-H); 9.32 (s, C, =H).

6. 1: M,p.,: 211-212°% (60%); IR (CHClB): 1595, 1470 cm-l. 1H NMR (CDC13): § 3.00 (s,

5—CH3): 3.14 (s, 11—CH3); 4.08 (s, N—CH3): 7.30 (x, J=8, CS-H/Cg—H): 7.38 (4,

J=8, CT-H); 7.58 (t, J=8, CS-H/CQ—H); 7.86 (&, J=7, C4-H); 8.32 (d, J=8, ClO—H);
— - . - + . .

8§.46 (d, J=7, C3 H); 9.64 (s, C1 H). MS (M) 260.1307; Calecd. for C18N16N2'

260.1301.

1. 1H NMR (CDCl.}: & 1.25 (t,

3t
2.53 (s, CHyj; 3.76 (s, N—CH3J; 4.25 (gq, JI=7,

7.(a) 7: 01l (30%); IR (CHCl,): 1730, 1620, 1580 cm

J=7, CH4); 1.66 (d, J=7, CHj);

CHZ); 5,05 (g, J=7, CH); 6.5-7.5 (m, arylprotons + pyridine CS—H); 7.70 (dxd,

J=7, J=1.5, pyridine C4-H}: 8.66 (dxd, J=5, J=1.5, pyridine CG_H)'

1

(b) 8: M.p.: 174-177° (60%); IR (CHCl,): 1740, 1655, 1615 cm . 'w WMR (CDC1,) :

§ 1.16 (t, J=7, CH3); 2.10 (s, CHy); 3.50 (s, CHy); 3.86 (s, N-CH;}; 4.28 (q,

E
J=7, CH,); 6.32 (s, D—CHZ); 7.3-7.5 (m, 8H-Ar); 8.22 (4, J=7, C4-H); 8.41 (m,

Cio-H) i 9.98 (4, J=7, C4-H).

10

(c) 3b: M.p,: 165-176° (81%). IR {CHClB): 1730, 1640, 1570 cm_l. !

H NMR (CDClB):

& 1.06 (t, F=7, CH3); 1.95 (s, CHS); 3.22 (s, CH 3.78 (s, N-CH3); 4.17 (a,

Rk
J=7, CH,); 7.35 (8, J=6, C,~H); 7.40 (m, 3H-Ar); 8.45 (m, C,,-H); 8.63 (4, J=6,
C3-H).

8. 2: M.p.: 228-229° (57%). IR (CHC1,): 1625 (sh), 1600 cm '. 'H NMR (CDCl,) s
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§ 2.81 (s, l-CHS); 2.98 (s, S-CH3); 3.86 (s, N-CH3); 7.15-7.35 (m, H) ;

CB and 9~
7.49 (4, J=8, C7wH); 7.63 (4, J=6.5, C4—H); 8.06 {4, J=8, Clo—ﬁ); 8.32 (4, J=6.5,

H N

Cy=H); 8.39 (s, C ,-H). Ms, (M*) 260.1302; Calecd. for CogHiglye

11 260.,1301.
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