
DOUBLE RING-TRANSFORMATION OF URACILS TO PYRAZOLONES VIA HYDANTOIN RING SYSTEM

Kosaku Hirota,^{*} Yoshihiro Yamada, Jun-ichi Haruta, and Shigeo Senda Gifu College of Pharmacy Mitahora-higashi 5 Chome, Gifu 502, Japan

<u>Abstract</u> —— Hydrazinolysis of 3-alkyl-1-aryl-5-bromo-6-methyluracil derivatives (1) causes a novel double ring-transformation to pyrazolones (2) <u>via</u> hydantoin ring system.

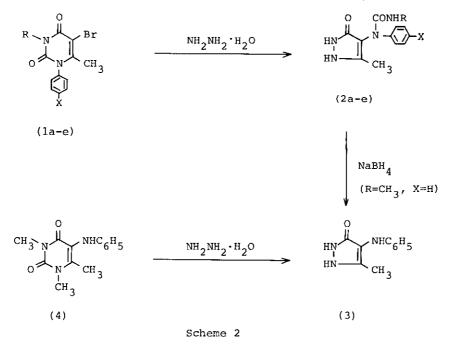
The ring-transformation of uracils to pyrazolones by hydrazinolysis is well documented.¹ This type of the facile transformation, which proceeds <u>via</u> an openchain intermediate (A), has been employed extensively for the chemical modification of nucleic acids.²

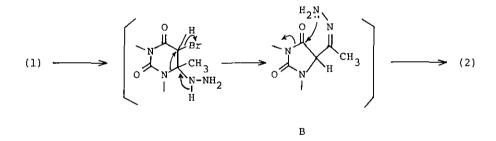

```
Scheme I
```

In the course of studies on the reactivity of 5-bromouracil derivatives towards nucleophiles,^{3,4} we found that 1-ary1-5-bromo-6-methyluracils (1) undergo a novel double ring-transformation into pyrazolones (2) <u>via</u> an intermediacy of hydantoin by the reaction with hydrazine hydrate.⁵ The present reaction proceeds in a different manner from the well-known uracil-to-pyrazolone transformation¹ in respect of the reaction mechanism.

When 5-bromo-3,6-dimethyl-l-phenyluracil (la) and excess hydrazine hydrate were heated in refluxing 2-propanol for 24 hr, 4-(3-methyl-l-phenyl)ureido-5-methyl-

pyrazol-3(2<u>H</u>)-one (2a) was formed in 89% yield. The structure of (2a) was pressumed by its elemental analysis and the following spectroscopic data; ¹Hnmr (DMSO-d₆) & 2.00(s, 5-Me), 2.61(d, J=4.5 Hz, NHMe, collapsed to a sharp singlet by deuterium exchange), 5.98(br, J=4.5 Hz, NH), 7.00-7.40(m, C₆H₅); uv(EtOH) λ max nm(log ε) 242(3.91). The ultimate proof of the structure was provided by the reduction of (2a) to 4-amino-5-methylpyrazol-3(2<u>H</u>)-one (3). N,N,N'-Trisubstituted ureas are easily reduced to formamides and amines with sodium borohydride in pyridine.⁶ In agreement with the previous result, the reduction of (2a) with sodium borohydride allowed isolation of an amine (3)⁷ (69% yield), which was




Table 4-(3-Alky1-1-ary1)ureido-5-methylpyrazo1-3(2H)-ones (2)

No.	R	х	Recryst. solvent	mp(°C)	Yield(%)
(2a)	снз	н	EtOH-ether	254	89
(2b)	с ₂ н ₅	H	2-PrOH	245-246	75
(2c)	CH2CH=CH2	Н	2-PrOH	238-239	59
(2d)	с ₄ н ₉	Н	2-PrOH	228-229	73
(2e)	CH ₃	осн3	2-PrOH	256-257	57

identical with a sample prepared conventionally by hydrazinolysis of 5-anilino-1,3-dimethyluracil (4).⁸

Analogously, treatment of 5-bromo-6-methyluracil derivatives (lb-e) possessing a phenyl group at the l-position with hydrazine hydrate led to the formation of the corresponding pyrazolones (2b-e) as shown in Table.

On the other hand, the 5-bromo-6-methyluracils having an alkyl group at the l-position did not undergo the ring-transformation despite of many trials under various conditions. Above experimental observations may be explained in terms of that a phenyl substituent at the l-position plays a role for the facile cleavage of the N_1 -C₆ bond on the uracil ring. Thus, a reasonable mechanism for the transformation of (1) to (2) is outlined as shown in Scheme 3. An initial nucleophilic addition of hydrazine hydrate to the 5,6-double bond followed by cleavage of the N_1 -C₆ bond could give a hydantoin intermediate (B). The intermediate (B) subsequently undergoes an intramolecular nucleophilic attack of the terminal amino group on the 4-carbonyl group to give the pyrazolones(2).

Scheme 3

Involvement of a hydantoin intermediate in the present ring-transformation accommodates that (1) undergoes ring contraction to hydantoin upon treatment with a primary alkylamine in the place of hydrazine.⁴

- F. Lingens and H. Schneider-Bernlöhr, <u>Ann. Chem.</u>, 1965, <u>686</u>, 134; D.H. Hayes and F. Hayes-Baron, J. Chem. Soc. (C), 1967, 1528.
- N.K. Kochetkov and E.I. Budwsky, Progr. Nucleic Acid Res. Mol. Biol., 1969, 9, 403; H. Töler, "Procedures in Nucleic Acid Research", Vol. 2, G.L. Cantoni and D.R. Davies, Eds., Happer and Row, New York, 1971, pp. 680-699.
- S. Senda, K. Hirota, and K. Banno, <u>J. Med. Chem.</u>, 1972, <u>15</u>, 471; S. Senda,
 K. Hirota, and T. Asao, <u>J. Org. Chem.</u>, 1975, <u>40</u>, 353; K. Hirota, Y.Yamada,
 Y. Kitade, and S. Senda, <u>J. Chem. Soc. Perkin I</u>, 1981, 2943.
- 4) S. Senda, K. Hirota, and K. Banno, <u>Tetrahedron Lett.</u>, 1974, 3087.
- 5) For an excellent review of ring-transformations of pyrimidines, see H.C. van der Plas, "Ring Transformation of Heterocycles", Vol. 2, Academic Press, London, 1973, pp. 116-146.
- Y. Kikugawa, S. Yamada, H. Nagashima, and K. Kaji, <u>Tetrahedron Lett</u>., 1969, 699.
- 7) For (3): 1 Hnmr(DMSO-d₆) δ 1.98(s, Me), 6.38-7.14(m, C₆H₅); uv(EtOH) λ max nm(log ϵ) 247(4.22).
- 5-Anilino-1,3,6-trimethyluracil (4) was prepared by methylation of 5-anilino-6-methyluracil^{8a} with dimethyl sulfate; 8a) F.R. Gerns, A. Perrotta, and G.H. Hitchings, <u>J. Med. Chem.</u>, 1966, <u>9</u>, 108.

Received, 10th September, 1982