THIOAMIDE-CLAISEN REARRANGEMENTS AND ITS APPLICATION TO THE SYNTHESES OF INDOLE ALKALOIDS

Seiichi Takano, Michiyasu Hirama, and Kunio Ogasawara Pharmaceutical Institute, Tohoku University Aobayama, Sendai 980, Japan

Using an acyclic (1) and a cyclic (13) thioamides as substrates, thio-Claisen rearrangement reaction has been examined.

In the acyclic substrate, the rearrangement can be reiterated to give di- γ , δ -unsaturated thioamides (9) <u>via</u> mono- γ , δ -unsaturated precursors (5), but further iteration forming quaternary α -center cannot be achieved because of unreactivity of the α , α -disubstituted compounds to allyl bromides due to steric hindrance (Scheme 1).

On the other hand, in the cyclic substrate, the rearrangement can be reiterated to give di- γ , δ -unsaturated thioamides with quaternary α -center (19) via mono- γ , δ -unsaturated precursors (16) (Scheme 2).

$$\begin{array}{c} \begin{array}{c} R_1 \\ R_2 \\ R_1 \end{array} \\ \begin{array}{c} R_2 \\ R_1 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \end{array} \\ \begin{array}{c} R_1 \\ R_3 \end{array} \\ \begin{array}{c} R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \end{array} \\ \begin{array}{c} R_1 \\ R_3 \end{array} \\ \begin{array}{c} R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_3 \end{array} \\ \begin{array}{c} R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_4 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_4 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_4 \\ R_5 \end{array} \\ \begin{array}{c} R_1 \\ R_4 \\ R_5 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_4 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_5 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_5 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_2 \\ R_3 \\ \end{array} \\ \begin{array}{c} R_1 \\ R_3 \\ R_4$$

Employing the thio-Claisen rearrangement reaction as a key stage, a new synthetic approach to some indole alkaloids have been developed.