SYNTHESIS OF HETEROCYCLES USING ISOTHIOCYANATOMETHANIDE

Yoshiki Ohshiro, Ken-ichiro Hayashi, Atsushi Yamada, Gen-ichi Ishibashi,
Toshikazu Hirao, and Toshio Agawa
Faculty of Engineering, Osaka University
2-1 Yamada-oka, Suita, Osaka 565, Japan

Functionalized isothiocyanates are useful reagents for heterocycle synthesis particularly when a carbanion center can be generated in the α -position relative to nitrogen. The well-known fluoride ion-induced liberation of carbanions from silyl compounds would indicate that silylated methyl isothiocyanate is a suitable precursor for isothiocyanatomethanide.

Trimethylsilylmethyl isothiocyanate (1), bis(trimethylsilyl)methyl isothiocyanate (2), and tris(trimethylsilyl)methyl isothiocyanate (3) were prepared by the addition of sulfur to corresponding silylated methyl isocyanides.

$$(Me_3Si)_nCH_{3-n}N=C + S_x$$
 \xrightarrow{PhH} $(Me_3Si)_nCH_{3-n}N=C=S$ $\frac{1}{2}$ $n=1$ 76% $\frac{1}{3}$ $n=2$ 80% $n=3$ 76%

The isothiocyanate 1 was allowed to react with carbonyl compounds in the presence of a catalytic amount of n-Bu₄NF to produce the oxazolidine-2-thione derivatives 4. Similarly the isothiocyanate 2 reacted with aldehydes, but the oxazolidine-2-thione derivatives 6 were produced in lower than 6% yield. The styryl isothiocyanate 5 was obtained as a main product in this case. The reaction of the isothiocyanate 3 with benzaldehyde in the presence of a catalytic amount of n-Bu₄NF afforded α -(trimethylsilyl)styryl isothiocyanate α 0 and α 0 and α 0 in 26% and 7% yields, respectively. The methodology mentioned above was able to be applied to the reaction of α 1 and α 2 with imines to produce the imidazolidine-2-thione derivatives α 2 and α 3, respectively. The isothiocyanate α 3 also reacted with the azadiene α 4 to afford 3-phenyl-4-styryl-imidazolidine-2-thione α 4 yield.