FORMATION AND REACTIVITY OF DILITHIATED N-ACYLFURFURYLAMINES

Kosei Ohno and Minoru Machida

Faculty of Pharmaceutical Sciences, Higashi-Nippon-Gakuen University, Ishikari-Tobetsu, Hokkaido 061-02, Japan

Formation and reactivity of dilithiated N-acylfurfurylamines were investigated. N-Furfurylbenzamide $2(R^2=C_6H_5)$, obtained by benzoylation of furfurylamine(1), was lithiated predominantly at 5-position of the furan ring with n-butyllithium(n-BuLi) /THF/-78°C and was allowed to react with methyl iodide to give 5-methylated N-furfurylbenzamide(4). While instead of n-BuLi as a base, lithium diisopropylamide(LDA) was used for the reaction, N-furfurylbenzamide(2) underwent efficient and regioselective lithiation at the furfuryl position, followed by reaction with various electrophiles to give α -substituted N-furfurylbenzamide derivatives(6) in good yields.

On the other hand, dilithiated N-furfurylbenzamide(\S) underwent a facile opening reaction of furan ring when warmed ambiently from -78° C to -30° C $\sim -10^{\circ}$ C followed by quenching with aq.sat.NH₄Cl solution to furnish all-trans 2,4-pentadienal derivatives (\S)(R^2 =C₆H₅). 5-Alkylated \S (E= alkyl) was also prepared by one-pot reaction from \S , namely, which was lithiated with 3.2 eq. mol. of LDA/ -78° C and was allowed to warm to -30° C to yield ring-opened trianion(\S), followed by reaction with alkyl halides to give \S .

The lithiation and ring-opening reaction of carbamate derivatives (-NHCO $_2$ R) and urea-type derivatives (-NHCON(R) $_2$) as other acyl-derivatives with the same conditions as mentioned above, proceeded analogously as in the case of benzamide derivatives.