H NHR

A NEW PROCEDURE FOR THE INTRODUCTION OF AN AMINO GROUP TO AZAHETEROCYCLES

Hiroshi Hara and Henk C. van der Plas* Laboratory of Organic Chemistry, Agricultural University De Dreijen 5, Wageningen, The Netherlands

Amination of diazines ($\underline{1}$, $\underline{2}$, and $\underline{3}$) by the Chichibabin's method is known to give an unsatisfactory result. Therefore, we planned to oxidize directly the intermediary σ -adducts ($\underline{4}$, $\underline{5}$, and $\underline{6}$), which were generated with potassium amide in liq. ammonia. Among others, potassium permanganate was the best oxidizing agent. Thus, we succeeded in the high yield production of the amino diazines ($\underline{7}$, $\underline{8}$, and $\underline{9}$). Similarly, quinazoline, quinoxaline, diphenyl-s-triazine, and a few derivatives of diazines ($\underline{1}$ and $\underline{2}$) were easily aminated.

On the other hand, the σ -adduct ($\underline{10}$ or $\underline{11}$), which were formed by dissolution of pteridine ($\underline{12}$) in liq. ammonia or ethylamine without potassium amide, could be oxidized to give 4-amino ($\underline{13}$)- or 4-ethylamino ($\underline{14}$)-pteridine in a high yield. In the case of 2-chloropteridine ($\underline{15}$), no replacement of chlorine atom with amino group was observed. Thus, 4-amino ($\underline{16}$)- and 4-ethylamino ($\underline{17}$)-2-chloropteridine were obtained from $\underline{15}$ by the same treatment as above.

	N		CN NH NH
H NH2	H NH ₂	3 N H _{NH2}	$\frac{10}{11} : R = H$ $\frac{11}{1} : R = Et$
NH ₂ N	<u>5</u> NH ₂	<u>6</u>	$ \begin{array}{c} 12 : R = X = H \\ 13 : R = NH_2, X = H \end{array} $
√N 7	≥ N 8 8	NH2 9	$ \frac{14}{15} : R = EtNH, X = H $ $ \frac{15}{16} : R = H, X = C1 $ $ \frac{16}{17} : R = EtNH, X = C1 $