STEREOSELECTIVE [3 + 2] CYCLOADDITION REACTION OF PYRIDINIUM AND THIAZOLIUM METHYLIDES TO ELECTRON-DEFICIENT OLEFINIC DIPOLAROPHILES

Otohiko Tsuge*, Shuji Kanemasa, and Shigeori Takenaka
Research Institute of Industrial Science, and Department of
Molecular Science and Technology, Interdisciplinary Graduate
School of Engineering Sciences, Kyushu University, Kasuga,
Kasuga-shi, Fukuoka 816

Abstract — The cycloaddition reaction of pyridinium and thiazolium methylides to electron-deficient olefinic dipolarophiles has been found to take place through an endo approach of the anti-ylides to the dipolarophiles affording the stereoselective [3 + 2] cycloadducts in quantitative yields.

It has been recently reported that methylenecyclopropenes bearing unsaturated substituents at the 4-position react with a variety of ylides of nitrogen heterocycles such as thiazolium^{1,2}, pyridinium³, and imidazolium methylides⁴ giving pentacyclic cage compounds. An intermolecular 1,3-dipolar cycloaddition and an intramolecular Diels-Alder reaction are comprised in this double cycloaddition reaction; a diene moiety for the latter reaction originates from the dipolarophile (the methylenecyclopropenes).

Another type of double cycloaddition reaction could be realized by the reaction of heterocyclic N-ylides in which the ylide carbon carries a diene moiety. Pyridinium and thiazolium (2-furoyl)methylides are the ylides of our choice. According to the molecular model inspection, only the cis [3 + 2] cycloadduct that is available in the reaction of a syn form of the ylide with dipolarophiles is favored for the second intramolecular Diels-Alder reaction⁵.

However, few studies on the stereochemical course of 1,3-dipolar cycloaddition reaction of pyridinium and thiazolium methylides to olefinic dipolar philes have been reported so far^6 . The stereostructure of the only isolated [3 + 2] cyclo-

adduct of pyridinium phenacylide to acrylonitrile was not determined. We have recently reported the formation of endo [3 + 2] cycloadduct between the anti form of thiazolium phenacylide and a methylenecyclopropene².

In the present communication, we would like to describe the 1,3-dipolar cycloaddition reaction of pyridinium and thiazolium methylides to several olefinic dipolar-ophiles leading to the quantitative formation of endo [3 + 2] cycloadducts between the corresponding anti-ylides and dipolarophiles.

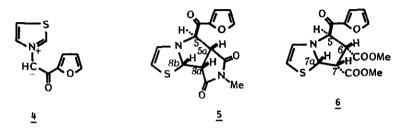
The reaction of pyridinium (2-furoy1)methylide $\underline{1a}$, which was generated in situ from N-(2-furoy1methy1)pyridinium bromide⁸ and triethylamine, with N-methylmaleimide $\underline{2a}$ in chloroform at room temperature for 10 min gave the 1:1 adduct $\underline{3a}$ in a quantitative yield. The structure of $\underline{3a}$ was determined as an endo adduct between the antiform of $\underline{1a}$ and $\underline{2a}$ on the basis of the spectral data⁹. The coupling constants of J_{4-3a} (0 Hz), J_{3a-9b} (7.9 Hz), and J_{9b-9a} (7.9 Hz) rule out the other stereoisomers.

Similarly the endo [3 + 2] cycloadducts $\underline{3b}-\underline{3j}$ of anti forms of the various pyridinium methylides $\underline{1a}-\underline{1f}$ were obtained also in almost quantitative yields in the reaction with N-substituted maleimides $\underline{2a}-\underline{2d}$ under the reaction conditions shown in Table 1 (Scheme 1).

 $\underline{3i}$: E=R=COOEt, R'=Me $\underline{3i}$: E=R=COOEt, R'=p-MeC₆H_n

3f: E=COOMe, R=H, R'=p-MeC₆H₄ 3g: E=COOEt, R=H, R'=p-MeC₆H₄ 3h: E=p-NO₂C₆H₄, R=H, R'=p-MeC₆H₄

Scheme 1


The exclusive formation of stereoselective [3+2] cycloadducts in the above reaction is of great surprise. The pyrrolidine ring formed in the cycloaddition reaction of azomethine ylide 1,3-dipoles to olefinic dipolarophiles is known to suffer an epimerization by heating or on the treatment with base 10 , 11 . However, neither an epimerization nor a deuterium exchange reaction occurred 12 by heating the cycloadduct 3a in benzene in the presence or absence of triethylamine, or when 3a was treated with triethylamine- D_2O in deuteriochloroform. The spectroscopic follow (1H -NMR) of the reaction of 1b with 2a and that of N-phenacylpyridinium bromide with 2a in the presence of triethylamine in deuteriochloroform showed that these reactions were completed within a few minutes even at 0 °C forming the cycloadduct 3c both in quantitative yields, indicating that all the isolated [3+2] cycloadducts 3 are kinetically controlled.

Scheme 2

The highly selective participation of the anti form of pyridinium ylides $\underline{1}$ in the 1,3-dipolar cycloaddition reaction can be explained by the relative stability between the transition state \underline{A} from an endo approach of the anti-ylide and the one \underline{B} from the syn ylide. The former \underline{A} leading to the observed products $\underline{3}$ may be less crowded and thus more stable than the latter \underline{B} as shown in Scheme 2.

The reaction of thiazolium (2-furoyl)methylide $\underline{4}$, which was generated in situ from N-(2-furoylmethyl)thiazolium bromide 13 and triethylamine, with $\underline{2a}$ in chloroform at

Scheme 3

room temperature for 10 min gave the 1:1 adduct $\underline{5}$ as the single product in a quantitative yield (Scheme 3). The structure of $\underline{5}$ was again easily assigned as the endo [3+2] cycloadduct between the anti form of $\underline{4}$ and $\underline{2a}$ on the basis of the coupling constants among the hydrogens on the newly formed pyrrolidine ring (Table 1). The similar endo [3+2] cycloadduct $\underline{6}$ was obtained in the reaction of $\underline{4}$ with dimethyl maleate under similar reaction conditions.

Table 1. endo [3+2] Cycloadducts $\underline{3}$, $\underline{5}$, and $\underline{6}$.

	Reaction	Yield [%]	[℃]	[∨] C=0 [cm ⁻¹ }	Coupling Constants			M ⁺
	Conditions ^{a)}				J _{4-3a}	J _{3a-9b}	J _{9b-9a}	[m/e]
<u>3a</u>	r.t. 10 min	quant.	127-130 ^{b)}	1760, 1690, 1660	0 Hz	z 7.9 H	z 7.9 Hz	298
<u>36</u>	r.t. 10 min	quant.	145-153	1770, 1705, 1670	0.5	7.9	7.9	374
<u>3c</u>	r.t. 10 min	quant.	150-153 ^{b)}	1780, 1695, 1678	0.6	7.7	7.7	308
<u>3d</u>	r.t. 10 min	quant.	72-73	1776, 1720, 1705	0.8	8.0	8.0	370
<u>3e</u>	r.t. 10 min	quant.	oil	1775, 1710, 1690	0.7	7.8	7.8	334
<u>3f</u>	r.t. 10 min	quant.	133-136	1780, 1740, 1710	0	8.0	8.0	338
<u>3g</u>	r.t. 10 min	quant.	94-97	1775, 1730, 1705	0	8.0	8.0	352
<u>3h</u>	r.t. 24 h	59 ^{C)}	146-149	1770, 1720, 1705	0.8	8.0	8.0	401
<u>3i</u>	reflux 4 h	quant.	oil	1770, 1730, 1710	-	8.1	8.1	348
<u>3j</u>	reflux 4 h	quant.	65-67	1760, 1730, 1710	-	7.8	7.8	424
<u>5</u>	r.t. 10 min	quant.	178-179	1770, 1705, 1680	0 (J _{5-5a}	8.0 J _{5a-8a}	8.0 J _{8a-8b})	304
<u>6</u>	r.t. 10 min	92	oil	1740, 1720, 1670	0 (J ₅₋₆	7.0 J ₆₋₇	7.0 J _{7-7a})	337

- a) All the reactions were carried out in chloroform.
- b) Melted with decomposition.
- c) The unreacted pyridinium salt was recovered in 40 % yield.

Thus, it has been found that the anti form of pyridinium and thiazolium methylides with an electron-withdrawing substituent at the ylide carbon exclusively contributes to the cycloaddition reaction with olefinic dipolar philes forming the stereoselective endo [3+2] cycloadducts. These cycloadducts have an unfavored configuration for the intramolecular Diels-Alder reaction (the cycloadducts $\underline{3a}$, $\underline{3b}$, $\underline{5}$, and $\underline{6}$ are the case). We are now studying the formation of syn-ylide cycloadducts.

REFERENCES

- 1) O. Tsuge and H. Shimoharada, Chem. Pharm. Bull., 1982, 30, 1903.
- 2) O. Tsuge, H. Shimoharada, M. Noguchi, and S. Kanemasa, Chem. Lett., 1982, 711.
- 3) O. Tsuge, S. Kanemasa, and S. Takenaka, Chem. Lett., 1983, 519.
- 4) O. Tsuge, S. Kanemasa, and S. Takenaka, Bull. Chem. Soc. Jpn., in press.
- 5) The diene and dienophile in the cis-cycloadduct <u>C</u> which is obtainable from the syn-ylide are located close enough to interact each other. However, the similar interaction is not expected in the trans-cycloadduct <u>D</u> that corresponds to the one between the anti-ylide and the dipolarophile (A=B).

- 6) The cycloaddition reaction of isoquinolinium (p-chlorophenyl)methylide to electron-deficient olefins has been reported: B. E. Landberg and J. W. Lown, J. Chem. Soc., Perkin I, 1975, 1326.
- 7) J. Fröhnlich and F. Kröhnke, Chem. Ber., 1971, 104, 1621.
- 8) The bromide was obtained in the reaction of pyridine with 2-(bromoacety1)furan in acetone at 0 °C in 68 % yield. mp 208-209 °C.
- 9) The IR and mass spectra of 3a are given in Table 1. 1 H-NMR (CDC1 $_{3}$) δ 2.90 (3H, s, Me), 3.40 (1H, t, J = 7.9 Hz, 9b-H), 3.64 (1H, d, J = 7.9, 3a-H), 4.54 (1H, ddd, J = 7.8, 3.9, and 1.4 Hz, 7-H), 4.70 (1H, ddd, J = 7.9, 5.8, and 1.4 Hz, 9a-H), 5.15 (1H, s, 2-H), 5.44 (1H, ddt, J = 10.0, 3.9, and 1.4 Hz, 8-H), 5.91 (1H, ddt, J = 10.0, 5.8, and 1.4 Hz, 9-H), 6.09 (1H, dt, J = 7.8 and 1.4 Hz, 6-H), 6.58, 7.38, and 7.64 ppm (each 1H, dd, furyl). The other cycloadducts 3b-3j, 5, and 6 gave the satisfactory spectral data.

- 10) P. B. Woller and N. H. Cromwell, J. Org. Chem., 1969, 35, 888. See also the literature in ref. 6.
- 11) O. Tsuge, H. Shimoharada, and M. Noguchi, Heterocycles, 1981, 15, 807.
- 12) Heating <u>3a</u> in benzene under reflux for 4 h gave a complex mixture of products from which no epimerized isomers were detected. The treatment of <u>3a</u> as well as the other cycloadducts <u>3</u> with silica gel or acetic acid gave the pyridine-eliminated products in good yields. This result will be published soon.
- 13) N-(2-Furoylmethyl)thiazolium bromide was obtained in the reaction of thiazole with 2-(bromoacetyl)furan in acetone at 0 °C in 49 % yield. mp 204-205 °C.

Received, 6th June, 1983