SYNTHESIS OF 5,7-DIHYDROXY-8-CINNAMOYL-4-PHENYLDIHYDROCOUMARINS

Munekazu linuma^{*,a}, Shin Matsuura, and Fujio Asai^b
Gifu College of Pharmacy, ^a 5-6-1 Mitahora-higashi, Gifu 502,
Japan, Faculty of General Education, Aichigakuin University, ^b
Nisshin-cho, Aichi-gun, Aichi 470-01, Japan

Abstract --- 5,7-Dihydroxy-8-cinnamoyl-4-phenyldihydrocoumarins isolated from Pityrogramma trifoliata were synthesized for their structures confirmation.

Novel class of complex flavonoids were isolated from fronds of the fern <u>Pityrogramma trifoliata</u> (Polypodiaceae) and their structures were elucidated as 5,7-dihydroxy-8-cinnamoyl-4-phenyldihydrocoumarins (¿a, ¿a and ¾a) by Wollenweber and co-workers. These flavonoids have attracted much attention because they have a new type of skeletons composed by a chalcone and a neoflavonoid moiety.

$$R_{2}O$$
 $R_{1}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{3}O$
 $R_{4}O$
 $R_{5}O$
 $R_{1}O$
 $R_{1}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{3}O$
 $R_{4}O$
 $R_{5}O$
 $R_{6}O$
 $R_{7}O$
 $R_{1}O$
 $R_{1}O$
 $R_{1}O$
 $R_{1}O$
 $R_{2}O$
 $R_{3}O$
 $R_{4}O$
 $R_{5}O$
 $R_{6}O$
 $R_{7}O$
 $R_{1}O$
 $R_{1}O$
 $R_{1}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{2}O$
 $R_{3}O$
 $R_{4}O$
 $R_{4}O$
 $R_{5}O$
 $R_{5}O$
 $R_{6}O$
 $R_{7}O$
 $R_{7}O$
 $R_{7}O$
 $R_{7}O$
 $R_{8}O$
 R

For the synthetic strategy, three methods of construction of their skeletons are considered as follows; I: C_6 - C_3 *- C_6 * + C_3 **- C_6 **, II: C_6 - C_2 ** + C_3 *- C_6 * + C_1 **- C_6 ** and III: C_6 - C_3 **- C_6 ** + C_3 *- C_6 * (No marked carbons belongs to ring A and

C* and C** show the carbons of a neoflavnoid and a chalcone moiety respectively). Way I had been applied to the preparation of 8- or 6-dihydrocinnamoy1-5,7-dihydroxy-4-pheny1-2H-1-benzopyran-2-one by Wagner et al. but the position of dihydrocinnamoy1 group had not been decided. our present method, way II, is to condense an acetophenone (C_6 - C_2 **) with benzoylacetic acid (C_3 *- C_6 *) to obtain 4-phenylcoumarin (neoflavone) substituted with an acety1 group in ring A, and then to condense a benzaldehyde (C_1 **- C_6 **) with the neoflavone. The condensation of phloroacetophenone with ethy1 benzoylacetate in the presence of HCl³ gave two neoflavones, 8-acety1-5,7-dihydroxy- (A_1), and 6-acety1-5,7-dihydroxyneoflavone (A_1) in 1: 1 molar ratio. These positional isomers were easily distinguished by the observation of the aromatic protons and acety1 protons signals in their A_1 H nmr spectra. The protons of acety1 group in A_1 and H-6 in A_2 appeared in higher field area than those of acety1 group in A_2 and H-8 in A_3 by anisotropy of a side pheny1 group. Separation of A_3 and A_4 was carried out by a column chromatography on silica gel (eluent: AcOEt- C_6 H $_1$ 4 = 1 : 2). Hydrogenation of A_2 with hydrogen at 50 atm in

the presence of 10% Pd-C gave the dihydroneoflavone (4') [mp 175-177°C, colorless prisms; 1 H nmr (DMSO-d6) δ : 2.68 (3H, s, $COCH_3$), 2.99-3.21 (2H, m, H-3), 4.40-4.65 (1H, m, H-4), 6.23 (1H, s, H-6), 7.04-7.32 (5H, m). MS m/z: 298 (M⁺), 283, 255]. Methylation of 4' with dimethyl sulfate and K_2CO_3 in acetone, followed by condensation with benz-, p-anis- and veratraldehyde in the presence of potassium hydroxide, afforded 62 (when benzaldehyde was employed) with ring opening of dihydrocoumarin. 62 was treated with Ac_2O and AcoNa in benzene to give 15.6 The methoxy group at C-5 of 15 resisted to demethylation with using LiI, BBr_3 , $AlCl_3$,

EtSNa and MezSiI, therefore, the product thus obtained was the monomethyl ether of the natural product (1,c). The similar demethylations of 2b and 3b also gave 2c and 3c in which the methyl groups at C-5 still remained. After the investigation of the various reagents as protective groups, the isopropy1 group was found to be efficient to prepare these flavonoids. Isopropylation of 4' with isopropyl bromide and K_2CO_{τ} in DMF at 100°C for 4 h afforded the diisopropy1 ether (4"). 4" was condensed with benzaldehyde to give 6b. The similar treatment of 6b as in the case of 6a gave ld (mp 129-130°C, colorless plates). By the same way as ld, 2d (mp 171-173°C) and 3d (mp 163-165°C) were obtained by the condensation of 4" with p-isopropyloxyand 3,4-diisopropyloxybenzaldehyde. Cleavage of isopropyl groups was accomplished with BCl_3^8 in excellent yields to furnish 1a, 2a and 3a, which corresponded to the natural products provisionally called T-1, T-2 and T-3. The physical and spectral data are shown in Table I. The synthesized 12, 22 and 32 were identified completely with T-1, T-2 and T-3 respectively by the direct comparisons. Further application of isopropyl group as a protective group to flavonoids syntheses is in progress.

Table I Physical and Spectral Properties of 1a, 2a and 3a

, <u> </u>	mp (°C)	¹ H nmr (acetone-d6)	UV λ max [nm] (EtOH)	MS m/z (rel. int.)
le.	202-204	3.08-3.34 (CH ₂ CO) 4.65-4.48 (CHPh) 6.34 (H-6) 7.85 (d,J=16.0,H-β) 8.32 (d,J=16.0,H-α)	333 +A1C1 ₃ 358 +EtONa 405 +AcONa 340	386 (M ⁺ , 100) 358 (17) 343 (9) 309 (40)
દર	222-224	3.10-3.36 (CH ₂ CO) 4.70-4.86 (CHPh) 6.35 (H-6) 7.79 (d,J=15.6,H-β) 8.10 (d,J=15.6,H-α)	378 +A1C1 ₃ 432 +EtONa 430 +AcONa 397,405	402 (M ⁺ , 100) 384 (6) 359 (7) 309 (14)
Z Æ	204-206	3.05-3.36 (CH ₂ CO) 4.70-4.90 (CHPh) 6.33 (H-6) 7.77 (d,J=15.0,H-β) 8.02 (d,J=15.0,H-α)	394 +A1C1 ₃ 446 +EtONa 452 +AcONa 404	418 (M ⁺ , 100) 402 (13) 390 (9) 309 (19)

ACKNOWLEDGEMENT We thank Professor E. Wollenweber in Institut für Botanik, Technische Hochschule, Darmstadt for identification of our samples with the natural products.

REFERENCES AND FOOTNOTES

- 1. V.H. Dietz, E. Wollenweber, J. Favre-Bonvin, and L.D. Gomezp, Z. Naturfosch., 35g, 36 (1980).
- 2. H. Wagner, O. Seligamn, M.V. Chari, E. Wollenweber, D.M.X. Donnelly, M.J. Meegan, and B. ODonnel, Tetrahedron Letters, 4269 (1979).
- 3. S.K. Mukerjee, T. Saroja, and T.R. Seshadri, Tetrahedron, 24, 6527 (1968).
- 4. 8-Acety1-5,7-dihydroxyneoflavone (4); mp 281°C (EtOH), colorless needles. ¹H nmr (DMSO-d6) δ: 2.72 (3H, s, COCH₃), 5.90 (1H, s, H-3), 6.14 (1H, s, H-6), 7.46 (5H, br s, Ph). MS m/z: 296 (M⁺), 281 (M⁺-CH₃)(100%), 268. 6-Acety1-5,7-dihydroxyneoflavone (5); mp 235°C (AcOEt), pale yellow needles. ¹H nmr (DMSO-d6) δ: 2.65 (3H, s, COCH₃), 5.84 (1H, s, H-3), 6.40 (1H, s, H-8), 7.45 (5H, br s, Ph). MS m/z: 296 (M⁺), 281 (M⁺-CH₃)(100%), 268.
- 5. fg; mp 190-192°C (MeOH), yellow prisms. MS m/z: 432 (M⁺), 414 (M⁺-H₂O), 386 (100%).
- 6. 1b; mp 238-240°C, 2b; mp 168-170°C, 3b; mp 175-176°C.
- 7. $\oint D_{5}$; mp 145-148°C, yellow needles. ¹H nmr (CDC1₃) δ : 1.28 (6H, each d, J= 6.0 Hz, $\frac{\text{CH}_{3}}{\text{CH}_{3}}$), 1.38 (6H, d, J= 6.0 Hz, $\frac{\text{CH}_{3}}{\text{CH}_{3}}$), 3.30 (2H, d, J= 8.0 Hz, $\frac{\text{CH}_{2}}{\text{CO}}$), 4.40-4.48 (2H, m, 2xCH<), 5.19 (1H, t, J= 8.0 Hz, CHPh), 5.91 (1H, s, H-3'), 7.10-7.70 (10H, 2xPh), 7.65 (1H, d, J= 16.0 Hz, H- β), 8.01 (1H, d, J= 16.0 Hz, H- α), 14.24 (1H, s, OH). MS m/z: 488 (M⁺), 473, 241(100%).
- 8. T. Sala and M.V. Sargent, J. Chem. Soc., Perkin Trans. 1, 2593 (1979).

Received, 8th June, 1983