SYNTHESIS OF 2-SUBSTITUTED 3,5-DIBROMOTHIOPHENES THROUGH BASE-CATALYZED HALOGEN DANCE REACTION OF 2,5-DIBROMOTHIOPHENE

Shinzo Kano^{*}, Yoko Yuasa, Tsutomu Yokomatsu, and Shiroshi Shibuya Tokyo College of Pharmacy, 1432-1 Hormouchi, Hachioji, Tokyo 192-03, Japan

Abstract — Treatment of 2,5-dibromothiophene with LDA in THF at -78°C, followed by quenching with electrophiles afforded the corresponding 2-substituted 3,5-dibromothiophenes in good yield.

It is well known that 2-bromothiophenes are easily convertible to 3-bromothiophenes on treatment with metal amide in liquid ammonia^{1,2} (eq. 1). Furthermore, 2-bromo-3-lithiothiophene, generated from 2-bromo-3-iodothiophene, underwent a rapid halogen-metal exchange reaction similar to the base-catalyzed halogen dance (BCHD)³. This reaction is noted for the other thienyllithium compounds to ultimately give the stable 2-lithiothiophene derivatives³ (eq. 2).

However, lithiation of 2,5-dibromothiophene ($\underline{1}$) with lithium diisopropylamide (LDA) in THF or ether at -70°C was known to give 2,5-dibromo-3-lithiothiophene ($\underline{2}$) which behaved like a normal lithium reagent and 2,5-dibromo-3-trimethylsilyl thiophene ($\underline{3}$) was obtained by quenching with trimethylchlorosilane 4 . We examined the same reaction during the investigation of a synthesis of 3-substituted 2,5-dibromothiophenes, which would be useful precursors giving poly-substituted thiophenes. The lithiothiophene formed in this reaction was found to be 3,5-dibromo-2-lithiothiophene ($\underline{4}$), which would be derived from $\underline{2}$ by BCHD mechanism. The results of our studies are described in this paper. (Scheme 1).

Scheme 1

Table 1. 2-Substituted 3,5-Dibromothiophenes (5a)-(5j)

5	R	Yield (%)	bp (torr)	¹ H NMR (CDC1 ₃) 6 4H
5a	-CH ₃	95	70-75°C (2) ^a	6.92
5 b	-CH ₂ CH ₃	80	90-95°C (3)	6.80
5 c	-CH ₂ CH=CH ₂	68	108-113°C (3)	6.97
5 đ	- CHO	85	117-120°C (3)	7.19
5 e	-COOEt	72	130-135°C (3)	7.12
5 f	- СН ₂ СН (ОН) СН ₃	73	136-140°C (3)	7.00
5 g	-CH ₂ CH(OH)Et	68	138-144°C (3)	6.95
5h	- <	63	180-185°C (3)	6.95
5 i	HO'	77	163-167°C (3)	6.93
5j	-SCH ₃	45	154-159°C (3)	7.40

alit. bp 48-55°C (0.35-0.45)

Treatment of $\underline{1}$ with LDA (1.1 equi. mol, THF, -78°C, 0.5 h), followed by quenching with water at the same temperature gave 3,5-dibromothiophene in nearly quantitative yield without recovery of any trace amount of $\underline{1}$. This fact indicates that $\underline{2}$ initially generated from $\underline{1}$, was rapidly converted to $\underline{4}$ even at -78°C. The same reaction by the use of methyl iodide instead of water gave 3,5-dibromo-2-methyl-thiophene ($\underline{5a}$)⁵. In a similar fashion, ethyl iodide, allyl bromide, N,N-dimethyl-formamide, ethyl chloroformate, propylene oxide, butylene oxide, cyclohexene oxide, cyclohexanone, dimethyl disulfide were used to give the corresponding 2-substituted 3,5-dibromothiophene ($\underline{5b}$)-($\underline{5j}$), respectively. The results are summarized in the Table 1.

In addition, in order to confirm that substitutents were introduced to the 2-position, $\underline{5f}$ was led to 1-methyl-2-(2-thienyl)ethanol ($\underline{6}$). Treatment of $\underline{5f}$ with n-BuLi (3 equi. mol, THF, -78°C) afforded $\underline{6}^6$, which was identical with the authentic sample prepared by the reaction of 2-lithiothiophene with propylene oxide, in all respects.

REFERENCES

- For reviews: (a) M. G. Reinecke, <u>Tetrahedron</u>, <u>38</u>, 428 (1982); (b) M. G.
 Reinecke, <u>Reactive Intermediates</u>, Ed. by R. A. Abramovitch, Vol. <u>2</u>, Chap. 5,
 Plenum Press, New York (1982).
- 2. M. G. Reinecke, H. W. Adckes, and C. Pyrun, J. Org. Chem., 36, 3829 (1971).
- 3. S. Gronowitz and B. Holm, Acta. Chem. Scand., 23, 2207 (1969).
- 4. G. M. Davies and P. S. Davies, Tetrahedron Lett., 3507 (1972).
- 5. M. G. Reinecke, H. W. Adickes, and C. Pyrun, <u>J. Org. Chem</u>., <u>36</u>, 2690 (1971).
- 6. 95 % yield, bp 75-80°C (3 torr), 1 H NMR (CDCl₃) δ 1.22 (3H, d, \underline{J} =7 Hz), 2.91 (2H, d, \underline{J} =6 Hz), 3.80-4.17 (1H, m), 6.87-7.03 (2H, m), 7.20 (1H, d,d, \underline{J} =6 and 1.5 Hz).

Received, 7th June, 1983