A NEW SYNTHESIS OF (\pm) -LUPININE, (\pm) -EPILUPININE, AND THE RELATED HETEROCYCLES BY APPLICATION OF ANODIC OXIDATION

Makoto Okita, Takeshi Wakamatsu and Yoshio Ban*

Faculty of Pharmaceutical Sciences, Hokkaido University,

Sapporo, 060 Japan

Abstract — A new synthesis of (±)-lupinine, (±)-epilupinine, and the related heterocycles has been achieved by utilization of anodic oxidation of lactams bearing the malonate group at the terminal position of N-primary alkyl side chain.

It was reported in the previous paper 1 that the anodic oxidation of N-primary-alkyl lactams regionselectively occurred at the endocyclic methylene- α -carbon of nitrogen in five- and six-membered rings to furnish the hydroxylated lactams and imides, and this method was applied to the synthesis of various heterocycles 2 , including the natural alkaloids 3 . In this communication, we describe a new synthesis of the entitled alkaloids and the related heterobicyclic compounds, by anodic oxidation of lactams ($\frac{1}{6}$) bearing the malonate group at the terminal position of N-alkyl side chain.

$$(CH_2)_n$$
 $(CH_2)_m$
 $(CH_$

The required lactam $(\frac{1}{12})^4$ for a synthesis of the entitled alkaloids was prepared from dimethyl 3-iodopropylmalonate by heating with 2-ethoxy-3,4,5,6-tetrahydropyridine, at 110°C in nitrogen atmosphere⁵. A typical procedure of the anodic oxidation in this series is shown as follows: Into an undivided cell equipped with two platinum electrodes $(2 \times 1 \text{ cm}^2)$ was added a solution of the lactam $(\frac{1}{12}, 2.7 \text{ mM})$ and $\text{Et}_4 \text{NClO}_4$ (0.7 mM) in methanol (7 ml), which solution was electrolyzed by constant current (50 mA) at room temperature. After 2.8 F/mol of electricity was passed, the product $(\frac{2}{12})^6$ was obtained in 71 % yield.

- ii) TiCl₄, CH₂Cl₂, room temp., 3 days, Ar gas
- iii) LiCl, HMPA, 80°C, 24 h, N₂ gas
 - iv) LiAlH₄, THF, reflux, 3 h

The methylene chloride solution of this colorless oil (2a) was reacted with ${\rm TiCl}_4$ to give the quinolizidine derivative (3a, mp 86.5~88°C) in 77 % yield, possibly through generation of α -acyliminium cation (8) as a crucial transition state in the intramolecular C-C bond formation Decarboxylation of the compound (3a) gave two products, 4 (mp 49~50.5°C; 19 %) and 5 (mp 94~95°C; 49 %) 10. The lithium aluminum hydride reduction of 4 afforded (±)-lupinine [6, mp 59~61°C

(lit. 59°C); methiodide mp 285~289°C(decomp.) (lit. 303°C)] li in 55 % yield. By the same reduction of 5, (±)-epilupinine [7, mp 81~82.5°C (lit. 81°C); methiodide mp 252~257°C(decomp.) (lit. 248°C)] li was obtained in 93 % yield. The present anodic oxidation, regioselectively effected under a much milder and simpler condition on comparison with the conventional chemical oxidation methods, was also successful with five-membered lactams (10, 10), which were followed by intramolecular cyclization to give indolizidine (30, 76 %) and pyrrolizidine (30, 60 %) derivatives. These results will be published in full papers.

REFERENCES AND NOTES

- M. Okita, T. Wakamatsu, and Y. Ban, J. Chem. Soc. Chem. Comm., 1979, 749;
 The anodic oxidation of N-primary-alkyl lactams in methanol was also regio-selectively carried out in the same way to give methoxylated products., M. Okita, T. Wakamatsu, and Y. Ban, unpublished result; T. Nishitani, H. Horikawa, T. Iwasaki, K. Matsumoto, I. Inoue, and M. Miyoshi, J. Org. Chem., 1982, 47, 1706.
- 2. M. Okita, T. Wakamatsu, M. Mori, and Y. Ban, Heterocycles, 1980, 14, 1089.
- K. Irie, M. Okita, T. Wakamatsu, and Y. Ban, <u>Nouveau J. de Chimie</u>, 1980, <u>4</u>,
 275; K. Irie and Y. Ban, <u>Heterocycles</u>, 1981, <u>15</u>, 201; K. Irie and Y. Ban,
 ibid., 1982, <u>18</u>, 225.
- 4. Compound (la) IR(film) 1750(sh.), 1735, 1635 cm⁻¹; NMR(CDCl₃) δ 1.4~2.1(m, 8H), 2.36(m, 2H), 3.2~3.5(m, 5H), 3.74(s, 6H); MS m/e 271(M⁺), 140(base).
- 5. T. Fujii, S. Yoshifuji, and K. Yamada, <u>Chem. Pharm. Bull</u>., 1978, <u>26</u>, 2071.
- 6. Compound (2a) IR(film) 1750(sh.), 1735, 1645 cm⁻¹; NMR(CCl₄) δ 3.31(s, 3H), 3.72(s, 6H), 4.47(m, 1H); MS m/e 301(M⁺), 82(base).
- 7. Compound (3a) IR(nujol) 1740, 1725, 1645, 1635 cm⁻¹; NMR(CDCl₃) δ 1.1~2.6(m, 11H), 3.64(m, 1H), 3.74(s, 3H), 3.76(s, 3H), 4.83(m, 1H); MS m/e 269(M⁺), 213(base); Anal. Calcd: C, 57.98; H, 7.11; N, 5.20. Found: C, 58.09; H, 7.17; N, 5.17.
- Similar C-C bond forming reaction with malonic diester have been reported;
 see M. Malmberg and K. Nyberg, <u>J. Chem. Soc. Chem. Comm.</u>, 1979, 167; G. A.
 Kraus and K. Neuenschwander, <u>Tetrahedron Letters</u>, 1980, <u>21</u>, 3841; T. Shono,
 Y. Matsumura, and K. Tsubata, <u>J. Am. Chem. Soc.</u>, 1981, <u>103</u>, 1172. references

cited herein.

- 9. Compound (4) IR(nujol) 1720, 1635 cm⁻¹; NMR(CDCl₃) δ 1.4~2.7(m, 12H), 3.44 (m, 1H), 3.68(s, 3H), 4.85(m, 1H); MS m/e 2l1(M⁺), 155(base); Anal. Calcd: C, 62.54; H, 8.11; N, 6.63. Found: C, 62.43; H, 8.26; N, 6.56.
- 10. Compound (5) IR(nujol) 1720, 1635 cm⁻¹; NMR(CDCl₃) & 1.3~2.6(m, 12H), 3.48 (m, 1H), 3.70(s, 3H), 4.83(m, 1H); MS m/e 211(M⁺), 155(base); Anal. Calcd: C, 62.54; H, 8.11; N, 6.63. Found: C, 62.41; H, 8.19; N, 6.69.
- 11. G. R. Clemo, W. McG. Morgan, and R. Raper, J. Chem. Soc., 1937, 965; For other syntheses of lupinine, see R. H. F. Manske, "The Alkaloids, Chemistry and Physiology", 1967, Vol. IX, p. 175; E. Wenkert, K. G. Dave, and R. V. Stevens, J. Am. Chem. Soc., 1968, 90, 6177; E. E. van Tamelen and R. L. Foltz, J. Am. Chem. Soc., 1969, 91, 7372; T. Iwashita, T. Kusumi, and H. Kakisawa, J. Org. Chem., 1982, 47, 230.

Received, 21st October, 1982