MONOBACTAMS: RING ACTIVATING N-1-SUBSTITUENTS IN MONOCYCLIC B-LACTAM ANTIBIOTICS

William A. Slusarchyk', **Tarrara Dejneka. Erlc M.** Mrdan, **Eugene** R. **Weaver,** and William H. Koster The Squlbb Institute for Medlcal Research, P. 0. **Box** 4000, Princeton. New William A. Slusarchyk*, Tamara Dejneka, Eric M. Gordon, Eugene R. Weaver,
and William H. Koster
The Squibb Institute for Medical Research, P. O. Box 4000, Princeton, New
Jersey, 08540, U.S.A.
Abstract —— Several alternativ

Jersey, 08540, U.S.A.

occurring mnobactams, **3-acylarmno-2-oxoazetldine-1-sulfonates,** provide new monobactams having potent activity agalnst aerobic gram-negative bacteria. The monobactams compared here include: la1 **those** where the anionic actlvating group (sulfonate or phosphonate(-inate)) is attached to the β -lactam nitrogen, and (bl those where an oxygen atom is interposed between the acidic group and the β -lactam nitrogen, i.e. sulfate and phosphate(-onate) groups. Chemical and biological relationships between these classes of monobactams are presented.

In 1981, researchers at the Squibb Institute reported the isolation of SQ 26,180 (1) and **SQ** 26,445 (2) from bacterial fermentation broths of Chromobacterium violaceum and a Gluconobacter species, respectively¹. These β -lactam antibiotics exhibited modest antibacterial activity, resulting from a unique structural feature: a monocyclic β -lactam activated by an N-1 sulfonate group. The Squibb group suggested the term "monobactams" for this class of antibiotics characterized by the **2-oxoazetidine-1-sulffffc** acid moiety. Simultaneously, investigators at the **Takeda** laboratories reported the isolation of sulfazecin (3) and isosulfazecin (4) from the bacterium Pseudomonas acidophila 2 . The structures assigned to SQ 26,445 and sulfazecin are identical.

3 (S) - **ala SULFAZECIN 4 (R)** - **ala ISOSULFAZECIN**

Differences in the biological activity of SQ 26.180 and SQ 26,445, whose structures vary **1"** the acyl side cham, indicated that chemical modification mlght lead to enhanced biological activity. Among possibilities for structural modification of the naturally-occurring monobactams, with retention of the basic **2-oxoazetidine-l-sulfonate** nucleus, were: (a) removal of the methoxyl group at C-3, (b) side chain alteration at C-3, and (c) substitution at the 4-position. Replacement of methoxyl by hydrogen gave compounds with enhanced chemical stability but diminished βlactamase stability. Modification of the acyl side chain^{3,4,5} improved intrinsic activity, but stability to 8-lactamases was lacking. Addition of a methyl group at the C-4 position, either in the α or β configuration, however, afforded compounds with a high degree of β -lactamase stability⁵. One lead compound identified from these structure-activity relationships was the clinically useful monobactam, aztreonam (5). Efficacy has been demonstrated against a broad range of resistant aerobic gram-negative bacteria including Pseudomonas aeruginosa⁵.

5 AZTREONAM SO 26,776

The sulfonate moiety in monobactams activates the β -lactam ring and provides an anionic charge for binding at the active site of enzymes involved in bacterial cell wall biosynthesis. Other N-1 residues that might serve this dual purpose were investigated. Tetracoordinate sulfur (VI) and *phospharus* (v) have slmllar bond **lengths** and tetrahedral geometry; therefore, azetidmone-1-phosphonic(inic) acids (7) were potential compounds for comparison with sulfonated monobactams.

The availability of 1-hydroxy-azetidinones provided potential intermediates for the synthesis of analogous sulfates **(8)** and phosphates (91. In these derivatives, the effect of moving the anionic charge farther from the ring, while inductively activating the β -lactam toward nucleophilic attack, could be assessed.

Two synthetic approaches to N-sulfonated monobactams have been reported from our labora-**⁶**tories: sulfonation of **3-acylamino-2-azetidinones** (path **A)** and rlng closure **of** sulfonated amino **⁴**acid amides (path B) . In the former method (Scheme **2)** the azetidinones are obtained from mesylates (13) derived from hydroxamates of L-serine, L-threonine or L-allothreonine. Base induced ring closure to N-1 methoxylated azetidinone (14) followed by reductive removal of the methoxyl group with sodium in liquid ammonia provides the azetidinone (15). Sulfonation can be accomplished using a variety of reagents including pyridine. SO_3 and DMF. SO_3 complexes.

In the second method (Scheme 3) amino acid amides (17), derived from L-serine, Lthreonine or L-allothreonine, are sulfonated with 2-picoline.SO₃ complex to give the mesylated acylsulfamates (18), which undergo ring closure to (19) in the presence of $K_2\omega_3$. Subsequent deprotection under acidic conditions provides zwitterions (20) in overall yields of 52-58% from the starting amino acids. Overall yields of zwitterions (20) from the amino acids via Scheme 2 were 23-45%. Neither method requires chromatographic purification.

The preparation of azetidinone-1-sulfates (21) was facilitated by the recent availability of 1-hydroxy-2-azetidinones $(22)^7$. Gordon <u>et al</u>.⁸ at Squibb first reported sulfation of N-1 hydroxyazetidinones (22) to (21) m 1982. lnitial work in thls **area** was hindered by the instability of C-4 unsubstituted compounds (21), requrring development of appropriate protecting groups. When the greater stability of C-4 methylated compounds (21) became apparent, **mre con**ventional protecting groups were used, which facilitated rapid preparation of numerous analogs.

Intermediates 1231, derlved from **senne,** threonine, and allothreonine were initially converted by Miller et al.⁷ to hydroxamate intermediates (24). Ring closure using Mitsunobu conditions and hydrogenolysis of the benzyl protecting group gave the N-hydroxy-azetidinone (27). By applying methodology of Floyd et al.⁶ and Gordon et al.⁸, we have recently prepared the 1hydroxy BOC azetidinones (27) in about 25% overall yield from BOC derivatives of L-serine, Lthreonine, and L-allothreonine via the mesylate cyclization route (Scheme 5). All intermediates crystallize from reaction mixtures, and **no** chromatography is required.

Sulfonation of azetidinones (27) with excess pyridine.SO₃ complex in pyridine at room temperature is complete in about 0.5-1.5 hr, and the desired products are isolated in about 80% yield as tetrabutylamnlum **salts.** conversion to the corresponding potassium form followed by purification by **reverse** phase chromatography gives analytically pure potassium salts (281 in about 30% yield. Treatment of 4α - or 4β -methyl potassium salts (28) with trifluoroacetic acid

in the presence of anisole provides the desired zwitterions (29) in greater than 90% yield. Attempted deprotection of the 4-unsubstituted azetidinone (28), under similar conditions, results in decompo51t10n.

Because **BOC** derivative (28) **(R=H)** was unstable to acldlc condltlons necessary for deprotection, Z-protection of the 3-amino group was employed. 1-Hydroxy-Z-azetidinone (34) could be prepared as described by Gordon et al.⁸ Methanolysis of Z-protected D-cycloserine gave O-protected hydroxylamine (31), which was condensed with Z-L-serine to give (32). Triphenylphosphinediethylazodicarboxylate mediated cyclization afforded crude azetidinone (33) which, on treatment with DBU, undergoes β -elimination to Z-dehydroalanine methyl ester and (34). No chromatography is required, and Z-L-serine is converted to (34) in 51% yield. Sulfonation (61%) of (34) followed by rapid hydrogenolysis (>90%) in CH₃CN gave (36).

Synthesis of N-1 phosphonate activated 2-oxoazetidines (37) from (38) has been accomplished by Koster et al. ⁹ using a variety of methods involving phosphonylation(-inylation) of azetidinones (Scheme 8). For example, treatment of the lithium anion (39), generated from the corresponding azetidinone with n-butyl lithium in THF at -78°C, with dimethyl chlorophosphate provides (40). Monodemethylation to (41) occurs on subsequent treatment with thiourea in refluxing acetonitrlle. Alternatively, demethylation of N-1 phosphinates can be performed using bromotrimethylsilane, in the presence **of bis(trimethylsily1)acetamide** as an acid scavenger. Subsequent alcoholysis of the intermediate silyl ester gives phosphinate (44), exemplified in the sequence (39) to (44). Catalytic hydrogenation of intermediates (41) and (44) affords 3-aminoazetidinone-1-phosphonic(-inic) acids.

Scheme 8

An alternative approach (Scheme 10) to N-l **2-oxoazetidine-1-phosphonates** circumvents the dealkylation step. Phosphorylation of the lithium anion of the azetidinone with alkyl dichlarophosphates, followed by immediate hydrolysis of the intermediate phosphonyl(-inyl) chlorides (46) in aqueous buffer, affords phosphonates (-inates) (47). Overall yields in this sequence are 35-40s. Hydrolysis of phosphonyl chlorides (461 to (47) is **in** marked contrast to the hydrolysis of 1-chlorosulfonyl-2-oxoazetidines, which results in N-S bond cleavage to give N-l unsubstituted 2-oxoazetidines as reported by Graf¹⁰. Removal of the BOC protecting group from (47) is accomplished using trifluoroacetic acid.

Scheme 10

 $\ddot{}$

Synthesis of N-1 O-phosphorus activated 2-azetidinones (49) utilized 1-hydroxy-2-azetidinone intermediates (22), also used in the preparation of N-1 0-sulfates. In contrast to phosphonylation of the azetidinone nitrogen (vide supra), phosphonylation of (22) could be accomplished under mildly basic conditions.

Scheme 11

Treatment of the 1-hydroxyazetidinone (50) with chloromethylphosphonic acid methyl ester and 2,6-lutidine at -10°C followed by workup with buffer afforded the unstable methyl phosphonate (51) (1795 cm^{-1} , CH₃CN, β -lactam C=O). Decomposition of (51) occurred on silica gel chromatography and on standing in solvents such as CH_3CN or CH_2Cl_2 at ambient temperature. Demethylation was achieved using bromotrimethylsilane and bis(trimethylsilyl)trifluoroacetamide followed by buffered hydrolysis, which provided tetrabutylammonium salt (53) (1778 cm⁻¹, CH₃CN, β -lactam C=O) and subsequently, pure potassium salt (53) (1775 cm⁻¹, Nujol, β-lactam C=O), albeit in low yield $(5-10*)$.

^Amore efficacious preparation of (54) involved treatment of 150) with methylphosphonic dichloride and 2,6-lutidine in CH₂Cl₂ at -10°C. Subsequent hydrolysis of unstable intermediate (55) (1792 cm^{-1} , CH₂Cl₂, ß-lactam C=O) at pH 3-4 gave pure (54) in 34% yield. Attempts to remove the BOC protecting group from (541 **uslng** acidic conditions, as in the **case** of N-1 sulfate 128) **(R=H),** however, resulted in decomposition. **Amme** protection with the 2-group, therefore, had to be used, and **1-hydroxy-2-oxoazetidine** (341 was converted to the **Z** analog of 154) (50%), which, on hydrogenolysis of its tetrabutylammonium salt provided the relatively unstable free amine form of (56) .

Scheme 13

To circumvent the instability problems encountered in amine deprotection and acylation, 4-Usubstituted N-1 0-phosphorus activated azetidinones, at times, were prepared directly by PhoSPhorylation of appropriate **3-acylamino-1-hy&oxyazetidieones.** For example, potassium salt (59) was prepared by this direct method, although in low yield (10%).

In contrast to the acid instability of 4-unsubstituted N-1 0-phosphorus activated azetidinones like (54). **the** corresponding 4a- and 48-methyl analogs could be deprotected under acldic conditions, paralleling our experience with the N-1 sulfate series. **As** exemplified in the **40** methyl series in Scheme 15, phosphorylations with methylphosphonic(-oric) dichlorides in the presence of 2,6-lutidine or triethylamine at low temperatures gave unstable chloro intermediates (61), which **were** hydrolyzed at pH 3-5 to give stable potassium salts (621. Removal of the **BOC** group under acidic conditions at -10°C for 1 hr gave the amino acid salts (63) in good yields. The

phosphorylation step using methylphosphoric dichloride required temperatures of -60°C to -30°C for 1.5 hr, and was followed by buffered hydrolysis at ambient temperature providing (62) (R=OCH₂) in a maximum yield of only 12%. Phosphorylations with methylphosphonic dichloride, in contrast, were carried out at -10°C to -5°C for 1 hr and provided potassium salts in the 4α - and 4β -methyl series in yields ranging 26-40%. The low yield of phosphates like (62) $(R=OCH₃)$ as compared to phosphonates (62) $(R=CH_3)$ is attributed to decomposition during hydrolysis of (61) (R=OCH₃) compared to (61) $(R=CH_2)$.

Acylations of monobactams were performed using activated esters of desired acyl side chains under aqueous or non-aqueous conditions, as exemplified in Scheme 16. In general, yields င္ပုိ in acylations of monobactams where **X** is -SO₂ or -P₋R were considerably higher than those where 0 **³** x is -0SO or -0-h
x is -0SO or -0-h_{IC}R. The benzhydryl group in (65) was removed with dilute trifluoroacetic acid in the presence of anisole. Although 4-unsubstituted N-1 0-sulfonate and N-1 0-phosphorus activated azetidinones are unstable under acidic conditions, 4-unsubstituted compounds (65) (X=-OSO $^Q_\gamma$) and (65) (X=-0- $\frac{W}{|O}$ R) could be deprotected with dilute trifluoroacetic acid under carefully control-
00 led conditions.

Scheme 16

A comparison of intrinsic activity of several N-1 sulfonated and N-1 sulfated monobactams, including aztreonam (SQ 26,776), against a number of sensitive gram-positive and gramnegative organisms is given in Table 1. Little or no activity is observed against the grampositive Staphylococcus strains, but all compounds exhibit a broad spectrum of activity against aerobic gram-negative organisms, including Pseudomonas aeruginosa. For corresponding analogs between **classes,** activities are essentially equivalent, and 4-methyl substitution in either the a or **^B**configuration enhances activity.

Table 1 . **Influence of C-4 Substitution on Intrinsic Activity of 2-Oxoazetidine-1 -Sulfonates and 1-Sulfates**

		x	SO_3^-				OSO_3				
H ₂ N	$\frac{P_3}{P_1}$?ء ∕	R ₂	н	н	CH ₃	н	H	CH ₃			
\sim coor		R_{3}		CH ₃	н	н	CH ₃	н			
	MIC (μ g/ml) Agar Dil. 10 ⁴ CFU										
Organism	SC# SQ#		81,402	26,776	26,917	28,488	28.511	28,577			
Staph. aureus	1276		>100	>100	>100	>100	>100	50			
Staph. aureus	2400		>100	>100	>100	>100	>100	100			
E. coli	8294		0.4	0.4	0.2	0.8	0.8	0.8			
E. coli	10,857		0.2	0.1	0.1	0.4	0.1	0.1			
K. aerogenes	10,440		0.4	0.4	0.4	0.4	0.2	0.4			
Prot. mirabilis	3855		< 0.05	0.05	< 0.05	0.1	< 0.05	< 0.05			
Prot. vulgaris	9416		0.1	< 0.05	<0.05	0.2	< 0.05	0.05			
Ent. cloacae	8236		0.2	0.2	0.4	0.4	0.1	0.4			
Ser. marcescens	9783		0.8 0.8	0.2	0.2	8.0	0.1	0.2			
Ps. aeruginosa		9545		0.4	0.4	1.6	0.8	0.8			
Ps. aeruginosa	8329		3.1	6.3	1.6	3.1	1.6	1.6			

Table 2 shows a number of N-1 sulfated monobactams in an abbreviated representation of **OUI** secondary **screen** that is designed to **assess** sfability of omp pounds to B-lactamase-producing organisms at high (10⁶ CFU) and low (10⁴ CFU) inoculum level. Additionally, compounds are compared against three pairs of 6-lactamase-producing **(TEM+,** P99+, ~lt) and **non-8-lactamase-producing** (TEM-, P99-, K1-) strains of bacteria. A striking feature of the N-1 sulfonates is the increase in stability to 6-lactamases on substitution of methyl groups for hydrogen at **C-4.**

H₂N $\frac{R_3}{R^2}$ 'SO ₃ COOH		R ₂	н н			н	CH ₃		
		R_3				CH ₃	н		
	MIC (µg/ml) Agar Dil. Inocula (CFU)			106	104	106		106	
Organism	SC#	SQ#	81,402			26,776	26,917		
E coli TEM+	10,404		3.1	25	< 0.05	0.2	0.2	0.2	
E. coli TEM-	10,439		0.4	0.4	0.1	0.1	0.2	0.4	
Ent. cloacae P99+	10,435		>100	>100	25	50	12.5	50	
Ent. cloacae P99-	10,441		0.1	0.4	0.1	0.1	0.1	0.4	
K aerogenes K1+	10.436		>100	>100	25	>100	1.6	3.1	
K aerogenes $K1-$	10,440		0.1	0.2	< 0.05	0.1	0.2	0.4	
K. pneumo.	11.066		25	>100	0.4	0.8	0.4	0.8	
C. freundii	10,204		0.4	100	0.1°	25	0.2	25	
Prot rettaeri	8,217		< 0.05	0.1	< 0.05	1.6	< 0.05	< 0.05	
Prot. vulgaris	10,951B		$<$ 0.05	6.3	< 0.05	< 0.05	<0.05	< 0.05	
Ser. marcescens	9,782		1.6	1.6	0.1	0.4	0.2	0.8	
Ps. aeruginosa	8,329		$\overline{3.1}$	12.5	1.6	63	3.1	6.3	
Ps. aeruginosa	9,545		0.8	0.8	0,4	0.4	0.4	0.8	

Table 2. Effect of C.4 Substitution on Activity of 2-Oxoazetidine-1-Sulfonates Against β-Lactamase Producing Organisms

The secondary **screen** of a number of N-1 sulfates **is** shown in Table 3. In contrast to the sulfonates, susceptibility to β -lactamases is similar for the 4-unsubstituted and 40-methyl sulfates. All sulfates are significantly active against Pseudomonas aeruginosa. As a class, the N-sulfated monobactams are less lactamase stable than the N-sulfonates.

		R ₂	н			н	CH ₃		
COOH	OSO ₂	R_{3}		н		CH ₃	н		
	MIC (µg/ml) Agar Dil. Inocula (CFU)			106	10 ⁴	106	10 ⁴	106	
Organism	SC#	SO#		28,488	28,511		28,577		
E coli TEM+	10.404		50	>100	25	>100	1.6	6.3	
E. coli TEM-	10,439		0.4	1.6	0.2	0.8	0.4	0.4	
Ent. cloacae P99+	10.435		>100	>100	>100	>100	100	>100	
Ent. cloacae P99-	10,441		0.4	50	0.2	0.4	0.2	0.8	
K aerogenes K1+	10.436		>100	>100	>100	>100	>100	>100	
K. aerogenes K1-	10.440		04	0.8	0.2	0.8	0.2	04	
K. pneumo.	11,066		>100	>100	100	>100	6.3	50	
C. freundii	10,204		1.6	100	0.8	25	0.4	12.5	
Prot. rettgen	8,217		< 0.05	0.4	< 0.05	0.2	< 005	0.2	
Prot. vulgaris	10,951B		0.4	3.1	0.1	98	< 0.05	0.2	
Ser, marcescens	9,782		6.3	6.3	0.4	1.6	0.4	0.8	
Ps. aeruginosa	8,329		1.6	12.5	3.1	6.3	0.8	6.3	
Ps. aeruginosa	9,545		3.1	3.1	-		0.8	0.8	

Table 3. Effect of C-4 Substitution on Activitv of 2-Oxoazetidine-I. Sulfates Against β **-Lactamase Producing Organisms**

In Table 4 the intrinsic activity of several N-phosphorus and N-0-phosphorus activated monobactams is shown. None of the compounds exhibits activity against gram-positive organisms, and only the N-0-phosphorus class is significantly active against Pseudomonas aeruginosa. The Nphosphorus compounds are intrinsically less active than the N-O-phosphorus compounds, and although 4-methyl substitution results in high lntrmsic activlty in the N-0-phosphorus series, 46-methyl substitution in the N-phosphorus series results in dramatic lowering of activity.

The good stability of two significantly active N-phosphorus compounds to β -lactamases is reflected in Table **5,** especially in the **case** of the 4a-methyl compound SQ 27,327. By conparison, the N-0-phosphorus compounds **in** Table 6 are less lactawse stable, the 8-methyl derivative SQ 28,235, being **mare** stable than the a-methyl analog SQ 28,112 or' the 4-unsubstituted compound SQ 28,870. The N-O-phosphorus compounds have significant activity against Pseudomonas aeruginosa.

		x			OCH ₂	O_{-0} CH ₃						
	$\frac{a_{3}}{2}$ e ² ×	R ₂	н	н	CH ₃	H	н	CH ₃				
COOH		R_3	н	CH ₃	н	н	CH ₃	н				
	MIC (µg/ml) Agar Dil. 10 ⁴ CFU											
Organism	SC#	SQ#	27,159	27,327	27,490	28,870	28.112	28,235				
Staph. aureus	1276		>100	>100	>100	>100	>100	>100				
Staph. aureus	2400		>100	>100	>100	>100	>100	>100				
E. coli	8294		6.3	3.1	>100	3.1	1.6	1.6				
E. coli	10.857		0.8	8.0	50	9.6	< 0.05	0.4				
K aerogenes	10,440		6.3	3.1	>100	3.1	0.8	31				
Prot. mirabilis	3855		1.6	0.8	100	0.4	0.4	63				
Prot. vulgaris	9416		1.6	0.4	25	8.0	<0.05	< 0.05				
Ent. cloacae	8236		1.6	1.6	>100	0.8	0.2	0.8				
Ser, marcescens	9783		6.3	3.1	>100	1.6	0.4	1.6				
Ps. aeruginosa	9545		25	12.5	>100	3.1	1.6	1.6				
Ps. aeruginosa	8329		>100	>100	>100	3.1	1.6	3.1				

Table 4. Influence of C-4 Substitution on lntrlnsic Activitv of 2.0xoazetidine-1-Phosphonates and 1 .~hosphaies

 \overline{a}

Table 5. Effect of C-4 Substitution on Activity of 2-Oxoaretidine-1-Phosphonates Against β **-Lactamase Producing Organisms**

	P ₂	н		Н				
COOH	, OMB 'n.	R_{3}	H		CH ₃			
MIC (µg/ml) Agar Dil. Inocula (CFU)		104 106		10 ⁴	106			
Organism	SC#	SQ#	27,159			27,327		
E. coli TEM+	10,404		0.8	31	0.4	0.8		
E. coli TEM-	10,439		16	1.6	0.8	0.8		
Ent. cloacae P99+	10.435		>100	>100	6.3	50		
Ent. cloacae P99-	10,441		1.6	3.1	0.8	1.6		
K aerogenes K1+	10.436		6.3	25	0.4	0.4		
K. aerogenes K1-	10,440		0.8	1.6	0.4	0.8		
К. опеито.	11,066		1.6	3.1	1.6	1,6		
C. freundil	10,204		0.8	>100	0.4	3.1		
Prot. rettgeri	8,217		0.4	0.8	0.2	0.2		
Prot. vulgaris	10,951B		0.8	3.1	0.4	0.4		
Ser. marcescens	9,782		1.6	3.1	1.6	$\overline{3.1}$		
Ps aeruginosa	8,329		>100	>100	>100	>100		
Ps aeruginosa	9,545		25	12.5	6.3	6.3		

 $\bar{\mathcal{A}}$

		R ₂	н		H		CH ₃	
	o _{ss} ychs	B_{3}	H		CH ₃		н	
MIC $(\mu g/ml)$ Agar DII. Inocula (CFU)			10 ⁴	10 ⁶	10 ⁴	10 ⁸	10 ⁴	108
Organism	SC#	SQ#	28.870		28,112		28,235	
E. coli TEM+	10.404		125	50	0.8	3.1	0.4	1.6
E. coli TEM-	10.439		O.8	1.6	0.8	1.6	0.8	1.6
Ent cloacae P99+	10.435		>100	>100	100	>100	100	100
Ent. cloacae P99-	10.441		0.8	3.1	0.4	25	0.4	16
K aerogenes K1+	10436		>100	>100	>100	>100	50	100
K aerogenes K1-	10.440		0.4	1.6	08	1.6	0.8	1.6
K. pneumo.	11.066		100	>100	3.1	25	3.1	3.1
C. freundii	10.204		0.8	3.1	90	50	0.4	25
Prot. rettgen	8.217		0.1	0.8	0.05	0.4	< 0.05	04
Prot. vulgaris	10,951B		0.4	3.1	0.4	1.6	01	0.8
Ser, marcescens	9782		aп	12.5	0.8	3.1	1.6	3.1
Ps. aeruginosa	8.329		31	6.3	3.1	12.5	63	12.5
Ps aeruginosa	9.545		3.1	3.1	O.B	1.6	1.6	0.8

Table 6. Effect of C4Substitution on Activityof 2-Oxoazetidine-1-0-Phosphonates Against BLactamase Producing Organisms

Increasing the oxidation state of phosphorus in the 0-phosphorus activated series (Table 7) results in a decrease *in lactamase stability; however, activity against Pseudomonas aeruginosa* is undiminished.

^Acomparison of various 4a-methyl N-1 activated monocyclic azetidinones, including aztreonam **(SQ** 26.776). is grven in Table 8. The 0-activated derivatives, **SQ** 28,511 and **sQ** 28,112, although possessing good intrinsic activity, lack the β -lactamase stability of aztreonam. The Nphosphonic acid, SQ 27,327, exhibits the best lactamase stability, but has less intrinsic activity, particularly against Pseudomnas aeruginosa. Overall, the C-4 substituted monobactam N-1 sulfonates provide the most favorable combination of intrinsic antimicrobial activity and β -lactamase stability.

COOH	CH ₃	$\mathbf x$			$-SO_3$	$-OSO_3$		ဝူ	-P-OCH3	-0-Р-СН $_3$	
MIC (ug/ml) Agar Dil. Inocula (CFU)			10 ⁴	10 ⁶	104	106	10 ⁴	106	10 ⁴	106	
Organism	SC#		SO#		26,776		28,511	27,327		28,112	
E coli TEM+	10404			< 0.05	0.2	25	>100	0.4	08	0.8	3,1
E. coli TEM-	10439			01	0.1	0.2	0.8	08	0.8	08	16
Ent. cloacae P99+	10.435			25	50	>100	>100	6.3	50	100	>100
Ent. cloacae P99-	10.441			0.1	0.1	0.2	0.4	0.8	16	0.4	25
K aerogenes K1+	10,436			25	>100	>100	>100	0.4	0.4	>100	>100
K aerogenes K1-	10.440			<0.05	01	0.2	0.3	0.4	0.8	0.8	1.6
K pneumo	11.066			0.4	0.8	100	>100	1.6	1.6	3.1	$\overline{25}$
C freundil	10.204			0.1	0.2	0.8	25	0.4	3.1	0.8	50
Prot. rettgen	8.217			<0.05	1.6	$<$ 0.05	0.2	0.2	0.2	$<$ 0.05	04
Prot vulgaris	10.951B			0.05	< 0.05	0.1	0.8	0.4	04	04	1.6
Ser, marcescens	9.782			0.1	0.4	0.4	1.6	1.6	31	08	3.1
Ps aeruginosa	8329			1.6	6.3	3.1	6.3	>100	5100	3.1	12.5
Ps. aeruginosa	9545			0.4	04		-	6.3	6.3	0.8	1.6

Table 8. Comparison of Aztreonam and N-1 Congeners Against β -Lactamase **Producing Organisms**

 \mathbf{r}

REFERENCES

- 1. R. B. Sykes, C. M. Cimarusti, D. P. Bonner, K. Bush, D. M. Floyd, N. H. Georgopapadakou, W. H. Koster, W. C. Llu, W. L. Parker, P. A. Principe, M. **L.** Rathnum, W. A. Slusarchyk, W. **H.** Trejo, and J. S. Wells, Nature, 1981, 291, 489.
- 2. A. Imada, K. Kitano, K. Kintaka, M. Muroi, and M. Asai, Nature, 1981, 282, 590.
- 3. C. M. Cimarusti. H. E. Applegate, **H.** W. Chang, D. M. Floyd, W. **H.** Koster, W. A. Slusarchyk, and M. G. Young, *J.* Org. Chem., 1982, 47, 179.
- 4. D. M. Floyd, A. W. Fritz, and C. M. Clmarusti. J. **Oq.** Chem., 1982, \$7, 176.
- 5. *I.* Antimicrob. Chemother., **g** (Suppl. E), 'Azthreonam, a Synthetic Monobactam', eds. by R. **8.** Sykes and I. Phillips, 1981, pp. 1-148.
- 6. D. M. Floyd. A. W. Fritz. J. Pluscec. E. R. Weaver, and C. M. Cimarusti, J. Org. Chem., 1982, *a,* 5160.
- 7. P. G. Mattingly, J. F. Kerwin, Jr., M. J. Miller, *5.* **Am.** Chem. Soc., 1979, **m,** 3983; M. J. Miller, P. G. Mattingly, M. A. Morrison, and J. F. Kerwin, Jr., <u>J</u>. Am. Chem^r Soc., 1980, &QJ,, 7026.
- 8. E. M. Gordon, M. A. Ondettl, **J.** Pluscec, C. M. Cimaiusti, D. P. **Bonner,** and R. **8.** Sykes, - **3. Am.** Chem. **Soc.,** 1982, **m,** 6053.
- 9. W. H. Koster, R. Zahler, H. W. Chang, C. M. Cimarusti, G. A. Jacobs, and M. Perri, J. **Am.** Chem. Soc., 1983, 105, 3743.
- 10. R. Graf, Liebigs Ann. Chem., 1963, 861, 111.