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Abstract  - Novel heterocyc l ic  r i n g  transformation react ions developed recent ly  i n  our 

labora tory  are described. They inc lude ~ y r i m i d i n e  t o  oyr imidine, pyr imid ine t o  p y r i -  

d ine  transformations. Also discussed a re  novel one-sten nrocedures f o r  conversion o f  

1,3-dimethyluracil de r i va t i ves  i n t o  the pyrido[2,3-dlpyrimidine system. Some app l i -  

ca t i onso f these  novel react ions t o  the sy theses o f  compounds o f  b i o lop i ca l  i n t e r e s t  

a re  a l so  described. 

2 I n  1975 we synthesized the C-nucleoside, 5-(8-D-ribofuranosyl)isocytosine (9 - isocy t id ine ,  F ig .  I ) ,  

as an i sos te re  o f  c y t i d i n e  and 5-azacytidine. The l a t t e r ,  synthesized o r i g i n a l l y  by P iska la  and 

sorm3 i n  1964, was l a t e r  i so la ted  from Streptomyces ladakamus as a nucleoside a n t i b i o t i ~ . ~  5-Pza- 

c y t i d i n e  i s  known t o  be of value i n  the treatment o f  human acute myelopenous leukemia r e s i s t a n t  t o  

arabinosylcytosine ( a r a - c ) , ~  and has shown some a c t i v i t y  i n  pa t i en t s  w i t h  breast mela- 

noma,6 and colon cancer.6 I n  almost a l l  c l i n i c a l  cases, however, undesirable s ide  e f f e c t s  o f  t h i s  

a n t i b i o t i c  have been o b s e r ~ e d . ~ - ~  Moreover, 5-azacytidine i s  r e l a t i v e l y  unstable i n  aqueous media 

and i s  very suscept ib le  t o  enzymatic hydro lys is  forminp, eventually, r i b o s y l  de r i va t i ves  of N- 

arnidinourea o r  N-formylbiuret  and b iure t . '  9 - Isocy t id ine  was therefore prenared as a s tab le  ana- 

l og  o f  5-azacytidine. This synthet ic  C-nucleoside exhibi ted exce l l en t  i n h i b i t o r y  a c t i v i t y  auainst 

a number o f  mouse and human leukemic c e l l  l i n e s  i n  culture.1•‹ + - l socy t i d i ne  was found t o  be more 

a c t i v e  than 5-azacyt id ine against  ara-C res i s tan t  mouse leukemia P815 Xn.l0 These p r e l i m i -  

nary b io log i ca l  r e s u l t s  prompted us t o  prepare l a rge  amounts of t h i s  C-nucleoside for  f u r t he r  b io-  

l o g i c a l  studies and f o r  the  s,vnthesis of 14c-labeled 0- isocyt id ine requ i red f o r  p r e c l i n i c a l  phanna- 

co log ica l  i nves t i qa t i ons .  
14 

We modif ied1'  our o r i g i n a l  procedure and synthesized [2- C]-9- isocyt id ine (F ig .  2) by t r e a t -  

ment o f  the c r y s t a l l i n e  2-ribosyl-3-methoxyacrylate (4) with 14~-guanidine.12 Compound 4 and i t s  

a c r y l o n i t r i l e  analoq are v e r s a t i l e  intermediates f o r  the syntheses o f  var ious types of C-nucleo- 

s ides.  13-15 
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Heterocyc l ic  compounds are prepared mainly by two routes: (a)  by t o t a l  synthesis by c y c l i -  

za t ion  of a c y c l i c  compounds, and (b) by i n t roduc t i on  o r  modif icat ion of func t iona l  groups on a 

preformed he te rocyc l i c  r i ng .  The procedure shown i n  Fig. 2 f o r  the  synthesis o f  $ - isocy t id ine  

(6) belongs t o  the  t o t a l  synthesis category ( route  a).  This method, however, was ra the r  unsat is -  

factory f o r  l a rge  scale preparat ion of 6 required f o r  c l i n i c a l  t r i a l s .  Modi f ica t ion  o f  the  2- 

carbonyl group of $ -ur id ine  by route  (b )  i n t o  an amino function, although achieved l a t e r  by Wise 

e t  a1.l6. was a lso  not amenable t o  la rge scale nreparations. Thus, i n t roduc t i on  o f  a novel syn- -- 
t h e t i c  approach f o r  a f a c i l e  Preparation of $ - isocy t id ine  was u rgen t l y  needed. This oroblem was 

solved by e x p l o i t a t i o n  of pyr imidine-to-pyr imidine transformation react ion  develoned i n  our 

laboratory.  

Pyr imidine t o  pyr imid ine r i n g  transformation by replacement o f  one r i n g  n i t rogen w i t h  another 

17 
n i t rogen atom has long been known i-. , the Dimroth rearrangement and i t s  re la ted  react ions  I .  
Replacement of a pyr imidine r i n g  carbon by an exocycl ic carbon atom by the Dimroth type mechanism 

has a lso  been reported.'' Moreover, displacement of the urea fragment o f  the  pyr imid ineske le ton by 

another fragment has been known, s, conversion o f  u rac i l  de r i va t i ves  i n t o  a pyrazolone o r  iso-  

xazolone by treatment w i t h  hydrazine o r  h ~ d r o x y l a m i n e ~ ~  (Fig. 3). There react ions have been 

l i t t l e  explored f o r  t h e i r  synthet ic  u t i l i t y  but  were used l a t e r  f o r  other purposes, such as the  

preparat ion o f  apyr imid in ic  acids from nuc le ic  acids. 20 

D i rec t  displacement of the  urea po r t i on  of the  u r a c i l  aglycon i n  p u r i d i n e  (Fig.  3) w i t h  

guanidine should o f fe r  a simple preparat ion of $- isocyt id ine and, indeed, t h i s  conversion w i l l  be 

discussed l a t e r .  Pyr imidine t o  pyr imidine transformat ion by replacement o f  the  NI-C2-N3 po r t i on  

of the  pyr imid ine w i t h  1,3-ambident nucleophiles, however, has not been known u n t i l  very re -  

cent ly."  Transformation o f  u r a c i l  ( o r  mono-N-alkylated u r a c i l )  (F ig .  4 )  i n t o  isocy tos ine by 

treatment w i t h  guanidine d i d  not occur due, obviously,  t o  the generation o f  a u r a c i l  anion by the 

base guanidine which e l e c t r o s t a t i c a l l y  hinderedthe approachof anuc leoph i le  t o t h e  negat ive ly  charged 

u r a c i l .  Consequently, we t reated 1,3-dimethyluracil (a) (which does not contain d issoc iab le  pro- 

ton) w i t h  guanidine and, indeed, demonstrated the smooth conversion t o  isocytosine ( z ) . ~ ~  Several 

isocytosine de r i va t i ves  were also prepared by treatment o f  subst i tu ted 1,3-dimethyluraci ls (8b-e) 

w i t h  guanidine (F ig .  4 ) .  The react ion  i s  h i g h l y  dependent on the e lec t ron i c  nature o f  t h e  sub- 

s t i t u e n t  a t  C5. Thus, wh i le  5-fluoro-1 ,3-dimethyluraci l  (86) was converted i n t o  5-f luoroisocyto- 

s ine  (g) i n  a few hours i n  re f l ux ing  ethanol, transformation of 1.3-dimethylthymine (3) requ i red 

more s t r i ngen t  condi t ions,  such as fusion w i t h  quanidine at 80-90'. Methyl subs t i t u t i on  a t  C6 of 

8 a lso  retarded thereact ion .  1 ,3,6-Trimethyluracil (g) did no t  undergo conversion t o  6-methyl- - 

isocytosine (x) i n  r e f l u x i n o  ethanol and, aoain, fusion condi t ions were requ i red t o  ef fect  t h i s  



F i g .  3 

F-Urid ine  y - I socy t id ine  

F i g .  4 

mp(Oc) y i e l d ( % )  
9a 245-247 66 - 
9b 281-283 91  - 
9c 290-292 49 - 
9d 274-276 18 - 
9e  - 250 22 
aci-nitronium s a l t  - 
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react ion .  On t h e  other hand 5-bromo-l,3,6-trimethyluracil (&) was r e a d i l y  converted i n t o  5- 

bromo-6-methylisocytosine by treatment w i t h  guanidine i n  re f l ux ing  5 - ~ i t r o - 1 ,  

3-dimethyluraci l  (8f) formed a s tab le  adduct w i th  guanidine, bu t  fu r ther  t ransformat ion d i d  not 

occurz3 apparent ly due t o  an f i - n i t r ona te  s a l t  formation. 

These r i n g  t ransformat ion react ions most orobably proceed by the SN(ANRORC) mechanism 24 

( t d d i t i o n  of the l&cleophile, Ring g e n i n g ,  and R ing  Closure). Thus, the f i r s t  s tep would be 

a t tack  of the  nucleophi le (such as guanidine) a t  C6 of 8 (Fig. 4) t o  form a Michael adduct [A]  

fol lowed by sc i ss ion  of the N1-C6 bond t o  t h e  r i n g  opening intermediate [El .  Subsequent r i n g  c l o -  

sure by a t tack  of the terminal  guanidine n i t rogen o f  [B] wi th concomi tant  cleavaoe o f  C4-N3 l i n k -  

age would produce isocytosine and 1,3-dimethylurea. 

Treatment of & wi th  methylguanidine afforded two products, NZ-methyl- and Nl-methyiisocyto- 

s i ne  (10 and 11, Fig.  7 ) ,  i n  a 3:1 r a t i o .  The formation o f  two isomers i n  t h i s  reac t i on  i s  pro- 

bably due t o  compet i t ion f o r  at tack on C6 of & between the stronger nucleophi le (CH3NH) and 

s t e r i c a l l y  l ess  hindered nucleophi le (NH2 uroup) o f  the reagent. 

Urea and thiourea, which are weaker bases than guanidine. d i d  no t  react w i t h  & i n  ethanol. 

I n  the presence o f  sodium ethoxide, however, the react ion  proceeded very smoothly and u r a c i i  and 

t h i o u r a c i l  (3, Fig. 5) were obtained i n  good y i e l d s .  Reaction o f  & w i t h  N-methylthiourea pave 

N1-methyl-2-thiouraci l  ( E b ) a s  the major product. Treatment o f  & w i t h  p b u t y l t h i o u r e a  af forded 

on ly  the  N1-alkylated t h i o u r a c i l  (m) and no isomer was detected i n  the react ion  mixture.  1,3- 

d imethy l -2- th iourac i l  (g) was obtained by treatment o f  w i t h  N,N1-dimethylthiourea. For the  

synthesis o f  1-akylated 2 - th iou rac i l s ,  t h i s  r i n g  transformation i s  much simpler than the known 

mu l t i s tep  procedures. 25 

The react ion  of 8 w i th  th ioureas most probably proceeds via i n i t i a l  a t tack  on C6 of 8 by the 

s u l f u r  nuc leoph i le  t o  g i ve  [ C ]  (F ig .  5 )  fo l lowed by r i ng  opening t o  [Dl. Subsequent a t tack  by the  

s t e r i c a l l y  l e s s  hindered n i t rogen nucleophi le i n  [ D l  on C4 wi th  l i b e r a t i o n  o f  1,3-dimethylurea 

would r e s u l t  i n  the  formation of the  1,3-thiazine intermediate [El  which, then, would rearrange t o  

2 - th iou rac i l s  (12) i n  the presence of excess a l k a l i  .23 Alkal i -catalyzed rearrangement of a 1,3- 

t h i az ine  t o  a pyr imid ine i s  known. 26 

The novel pyr imid ine t o  pyr imid ine r i n g  transformation by displacement o f  the N1-C2-N3 fragment 

27 
by the  N-C-N fragment o f  1,3-ambident nucleophiles ( intermolecular transfraqment react ion  ) w i t h  

simple pyr imidines (such as 8 )  has thus been developed as described , App l ica t ion  of 

t h i s  pyr imid ine t o  pyr imidine r i n g  transformation react ion t o  1.3-dimethyl-y-uridine (13. Fig.  6) 

(which was obtained i n  good y i e l d  by treatment of q-uridine w i t h  DMF-dimethylacetal) afforded $- 

i socy t i d i ne  (5) i n  exce l len t  (Methy la t ion  o f  p u r i d i n e  w i th  conventional a l k y l a t i n g  

agents gave a mix ture  of several products28). Large amounts of q - i socy t i d i ne  prepared by t h i s  



F i g .  5 
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r i n g  t ransformat ion procedure were used i n  Phase I c l i n i c a l  t r i a l s .  Unfortunately, t h i s  C-nucleo- 

s ide  was found t o  cause severe hepato tox ic i ty  t o  pat ients."  2-Thio-+-ur id ine (14) and N2-methyl- 

+ - i socy t i d i ne  (5) were a lso  p r e ~ a r e d  (Fig.  6) by t h i s  approach.23 It was i n t e r e s t i n g  t o  note 

t h a t  i n  the prepara t ion  of the  l a t t e r ,  no isomeric N1-methylated product was found i n  the  re -  

ac t i on  although & gave a  mix ture  of NZ-methylated and N1-methylated products (F ig .  5). 

I n  the above react ions,  the urea po r t i on  o f  the 1,3-dimethyluracil r i n g  (8, F ig .  7 )  i s  d i s -  

placed by a  1  J a m b i d e n t  reagent A-B-C which contains two ni t rogen nuc leoph i l i c  centers ( A  = c = 

n i t rogen)  i n  the  molecule, and the product [F I  i s  a  pyrimidine. The ease w i t h  which the pyr imid- 

i ne  t o  pyr imid ine transformation occurred prompted us t o  invest iga te  the app l i ca t i on  of t h i s  t rans- 

fragment react ion  t o  the  preparat ion of r i n g  systems other than pyr imidine i n  the f o l l ow ing  order 

(F ig .  7 ) .  

1. To explore transformation of the  pyr imid ine (g) i n to  the  p y r i d i n e  system [HI using 1.3- 

ambident nucleophi les containing a  C-C-N fragment. 

2. TO synthesize a b i c y c l i c  system [ G I  using c y c l i c  ambident nucleophi les.  

3. To convert  the  pyr imidine r i n g  [a i n t o  the  benzene system [I] using 1,3-ambident reagents 

bear ing two carbon nuc leoph i l i c  centers i n  each molecule. 

4. To apply t h i s  t ransformat ion react ion  t o  s - t r i az ine  t o  s - t r i a z i n e  (16 t o  [J]) t ransfor-  

mation. 

5. To prepare pyr imidines [F] from s - t r i az ines  (16). 

For the  py r im id ine to  py r i d i ne  t ransformat ion (F ig .  8) we chose malonamide as the  ambident re-  

agent containing a  carbon and a  n i t rogen nuc leoph i l i c  center, and found t h a t  1.3-dimethyluraci l  

(E%) was converted smoothly i n t o  2,6-dihydroxynicotinamide (B). 30'31 Several 5 -subst i tu ted 1,3- 

d imethy lurac i ls  (8) were a lso  converted i n t o  5-subst i tu ted 2.6-dihydroxynicotinamides (m 
q).30'31 The r i n g  t ransformat ion react ion  proceeded more rap id l y  w i t h  d imethy lurac i ls  conta in ing 

an e lec t ron  withdrawing group a t  C5. The mechanism f o r  t h i s  reac t i on  i s  most probably S,(ANRORC) 24 

s i m i l a r  t o  the  pyr imid ine t o  pyr imid ine transformat ion already discussed. 22'23 I n  t h i s  case, the  

i n i t i a l  step would be the formation of the Michael adduct [ K ]  (F ig .  8) by react ion  w i t h  the  carbon 

nucleophi le.  The formation of the  r i n g  opened adduct [L] would be promoted by d i ssoc ia t i on  of 

the  a-proton (most ac id ic )  from [K], Cyc l i za t i on  of [L] by a t tack  of t h e  amide n i t r ogen  on t h e  

w e i d o  carbonyl carbon w i t h  concomi tant  removal o f  1.3-dimethylurea would fu rn ish  t h i s  pyr imi -  

d ine  t o  py r i d i ne  transformation. The fac t  t h a t  2.4-dihydroxynicotinamide was not detected i n  t h e  

react ion  mix ture  ( i n i t i a l  at tach i s  no t  by n i t rogen)  and methylmalonamide d i d  not reac t  w i t h  8 t o  

fonn the 5 ,5-d isubst i tu ted pyr id ine  d e r i v a t i v e  (no a-proton i n  [L] lends support t o  t h i s  mechanism). 

5-Ni t ro-1,)-dimethyluraci l  (8f) r a p i d l y  formed a  very stable adduct w i t h  malonamide, bu t  f u r t he r  

t ransformat ion d i d  no t  occur. 1  ,3,6-Trimethyluracil (g)  was recovered q u a n t i t a t i v e l y  from the 
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[KI [Ll  

R1 R3 time(min) y i e l d  (%) 

8a H - corn2 20 17a - 80 
8b CH3 COW2 180 - 17b - 65 
8d F - COW2 1 0  176 - 38 
8e B r  mNH2 - 30 - 17e 67 
8f M 2  CONH2 - 10 - 17f 0 

C l  m m 2 .  20 3 95 
, - 8h CN CONH2 10 - 17h 68 ............................. 

8a H - CN 30 - 1 7 i  97 
8a H - COW3 300 a 51 

8a H - C 6 H ~  420 17k - 30 
8a H - CwNa 1440 - 17m 14 

0 OH 
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react ion  mixture.  30,31 

W e a l s o e x a m i n e d t h e s u i t a b i l i t y o f a c e t a m i d e d e r i v a t i v e s a s  the C-C-N donors. Acetamide i t s e l f  

f a i l e d  t o  react  w i t h  a, probably because carbanion formation was no t  poss ib le  under these condi- 

t ions .  However, acetamide de r i va t i ves  bearing an e lec t ron  withdrawing group ( a t  R ~ )  d i d  react  

w i t h  8 t o  afford the  3-subst i tu ted 2,6-dihydroxypyridines (u) (F iq .  8) .  Recently we app l ied  

t h i s  t ransformat ion react ion  t o  1.3-dimethyl-ly-uridine (13) and converted 13 i n t o  5-8-D-ribofur- 

anosyl-2.6-dihydroxynicotinamide (WJ) (Fig.  8 ) .  As i n  the conversion of 13 i n t o  the  pyr imid ine 

C-nucleosides 6, 14 and (Fig.  61, very l i t t l e  0.8-epimerization was observed dur ing  the 13 t o  

c o n v e ~ s i o n . ~ ~  However, prolonged treatment of 2 i n  base caused u,8- isomerizat ion.  32 

Several pyr imid ine t o  py r i d i ne  t ransformat ion react ions have been repor ted by others,  33-36 

bu t  these are not appl icable t o  our u r a c i l  2,4-dioxopyrimidine systems such as u r a c i l s  (8) .  

The synthesis of b i c y c l i c  compaunds by e x p l o i t a t i o n  of our r i n g  t ransformat ion react ion  was 

achieved using 6-amino-l,3-dimethyluracil (Ma) as t h e  cycl ic 1,3-ambident reagent (F ig .  9). When 

a mix ture  of and 18a was t reated w i t h  base, 1,3-dimethylpyrido[2,3-dlpyrimidine-2,4,7(1H,3H, 

8H)btr ione (m) was obtained i n  33% y ie ld .  Several C6-substituted pyrido[2,3-dlpyrimidines (& 

e) were a lso  prepared from 5-subst i tu ted 1,3-dimethyluracils (8f,h-j) w i t h  m. It i s  i n t e r e s t i n g  - 
.to note t h a t  5-nitro-l,3-dimethyluracil ( 8 f )  [which formed a s tab le  Michael adduct w i t h  guani- 

dinez3 o r  w i t h  malonamide3' bu t  f a i l e d  t o  undergo t h e  r i ng  t ransformat ion react ion ]  af forded the 

6-nitropyrido[2.3-dlpyrimidine (gb) by react ion  w i t h  m. 
A p laus ib le  mechanism f o r  t h i s  pyrido[Z,3-dlpyrimidine formation i s  shown i n  Fiq. 9 .  Attack 

by C5 o f  18 on C6 o f  8 would form the Michael adduct [MI which would undergo r i n g  opening t o  pro- 

duce [Nl. Cyc l i za t i on  between the imino n i t m s e n  and the ureido carbonyl carbon i n  [Nl  and sub- 

sequent release o f  1,3-dimethylurea would complete t h e  pyrido[2,3-dlpyrimidine transformation. 
31 

A somewhat s i m i l a r  pyr imid ine t o  pyrido[2,3-dlpyrimidine transformation has been repor ted by 

A lbe r t  and Pendergast. 37 

1.3-Dimethyl-5-azauraci l  (16) was found t o  be extremely suscept ib le  t o  r i n g  t ransformat ion 
38 

(Fig.  10). Treatment of 16 w i t h  guanidine afforded 5-azacytosine (20). When 5 was t reated w i t h  

malonamide, uracil-5-carboxamide (a) was obtained. Similar treatment w i t h  cyanoacetamide af- 

forded 5-cyanouracil (m). 
The mechanisms f o r  these s - t r i a z i n e  t o  s - t r i a z i n e  and s - t r i az ine  t o  pyr imid ine transformations 

should be very s i m i l a r  t o  those we proposed fo r  the pyrimidine t o  p y ~ i m i d i n e ~ ~  and pyr imid ine t o  

31 py r i d i ne  . transformat ions discussed above. in the case of s - t r i a z i n e  t o  s - t r i a z i n e  conversion, 

the adduct [O]  (F ig .  10) i s  not of the Michael type. I n  the case o f  s - t r i a z i n e  t o  pyr imid ine 

transformat ion,  a t tack  of carbanion a t  C6 of 5 would occur t o  form t h e  complex [P I .  Proton 

t rans fe r  from t h e  exocyc l ic  a-pos i t ion  of s t ruc tu re  [ P I  t o  N5 would g i ve  r i s e  t o  carbanion [ O l  
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which would then undergo in t ramolecu lar  react ions  leading to pyr imidine 21. 38 

1.3-Dimethyl -5-azauraci l  (16) f a i l e d  t o  react w i t h  fluoroacetamide i n  a l coho l i c  alkoxide, the  

39 condi t ions which were employed fo r  the  s - t r i a z i n e  t o  pyrimidine transformation. It was found , 

however, t h a t  the  t r ans foma t i on  occurred smoothly i n  the presence of l i t h i u m  isopropylamide i n  

ether, and 5- f luorourac i l  was obtained i n  88% y i e l d  a f t e r  r e c r y s t a l l i z a t i o n  (Fig. 10). This i s  

probably the  s implest  and safest method of p repara t ion  of 5 - f luorourac i l  which i s  one of the  most 

ex tens ive ly  used drugs i n  the  treatment of advanced s o l i d  cancers.40 

I n  1963, t h e  f i r s t  pyr imidine t o  benzene r i n g  t ransfomat ion  reac t i on  was discovered i n .ou r  

labora tory  ra the r  serendipi tously.  Attempts a t  r e c r y s t a l l i z a t i o n  o f  crude 5-nitropyrimidine-2(1H)- 

one (22. Fig. 11) from acetone resu l t ed  i n  the  quan t i t a t i ve  formation o f  adduct (a) which, upon 

41 treatment w i t h  sodium hydroxide, was converted i n t o  p-nitroohenol ( m )  . 1-Methy l -5-n i t ropyr i -  

midin-2(1H)-one (g) ,  when t reated w i t h  acetone i n  t h e  presence o f  acid,  a f fo rded two separable 

racemic adducts 26 and 27. Both were smoothly converted i n to  upon a l k a l i n e  treatment (Fiq.  

~ l ) . ~ '  When 22 was t reated w i t h  e t h y l  acetoacetate i n  acid, adduct a was formed, from which 5- 

n i t r o s a l i c y c l i c  ac id  (NJ) was obtained. Treatment of 22 with d i e t h y l  acetonedicarboxylate i n  the  

presence of ac id  afforded the b i c y c l i c  intermediate 28 which was converted i n t o  2-hydroxy-5-nitro- 

i soph tha l i c  ac id  (&) by base treatment.42 

Conversion o f  the ketone-ni t ropyr imidine adducts (23) i n t o  n i t ropheno ls  (3) may proceed by 

the  fo l lowing two mechanisms, depending upon the r e l a t i v e  ac id i t y  of the a and Y ,  Path A (F ig .  

12) should operate predominantly. D issoc ia t ion  of t h e  proton from the o-carbon would cause r i n g  

opening between N3 and C4 t o  form in termedia te  [ R l .  Dissociation of the proton a t  the  Y pos i t i on  

from [ R ]  i n  base would r e s u l t  i n  the  format ion o f  carbanion [S] .  Cyc l i za t i on  between the carban- 

i on  and C6 by assistance from the n i t r o  group would lead to  the formation o f  g - n i t r o  intermediate 

[T I  from which p-ni t rophenol  products (24) would a r i s e  by simultaneous e l im ina t i on  of urea and 

aromat izat ion.  

I f  t h e  proton on C i s  more l a b i l e  than t h a t  on Co, path B should predominate. I n  t h i s  case, 

t h e i n i t i a l  s t e p i s  abst rac t ionof  apro ton from C of 23 t o  give the carbanion [TI ,  which should then 

undergo in t ramolecu lar  c y c l i z a t i o n  leading t o  formation of the b i c y c l i c  Michael adduct [U]. This 

intermediate [U] i s  s t r u c t u r a l l y  very s i m i l a r  t o  the  b i cyc l i c  de r i va t i ve  28, (F ig .  11) obtained by 

acid-catalyzed condensation of 22 w i t h  d ie thy l  acetonedicarboxylate. Conversion of [U] i n t o  the  

p-ni t rophenol  product (24) would proceed a the aromatization of the  ureido intermediate (Fig.  12) 

w i t h  l oss  of urea. 

1,3-Dimethyluracil (&) d i d  no t  undergo adduct formation w i t h  ke ton ic  reagents i n  a l coho l i c  

sodium alkoxide. The 5 -n i t r o  analog (x), however, was found t o  form a Michael adduct (2) (F ig .  

13) i n  base w i t h  d i e t h y l  acetonedicarboxylate. Prolonped base treatment of 29 afforded (5,6-di-  



Fig. 11 

Fig. 12 
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hydro-1,3-dimethyl-5-nitrouracil-6-yl)acetic ac id  (g), which obviously arose by a re t ro-Cla isen 

react ion  from 9.43 Compound 8f forms adducts (31) w i t h  other ke ton ic  reagents (such as e thy l  ace- 

toacetate,  acetone o r  butanone) as i so lab le  c r y s t a l l i n e  products. Prolonged heat ing of 31 i n  base 

afforded the n i t r o r e s o r c i n o l  de r i va t i ves  (32)43 (Fig. 13). This 5 - n i t r o u r a c i l  (Iif) t o  n i t r o reso r -  

c i no l  (32) t ransformat ion may proceed an open-chain intermediate by mechanisms s i m i l a r  t o  the 

5-n i t ropyr imid inone (g) t o  p-nitrophenol (4) conversion (Fig.  12). 

The above experiments i nd i ca te  the importance o f  the s u s c e p t i b i l i t y  o f  C6 o f  1,3-dimethylura- 

c i l  (8) t o  nuc leoph i l i c  a t tack  by ketonic reagents i n  the pyr imidine t o  benzene r i n g  t ransformat ion.  

5-Cyano-1.3-dimethyluracil i s  h igh ly  suscept ib le  t o  nuc leoph i l i c  a t tack  a t  C6 due t o  the 

electron-withdrawing e f f e c t  of the cyano subst i tuent  a t  C5. When &was t reated w i t h  acetone i n  

base, two products were obtained, one o f  which was 1 ,3-dimethyluracil-5-carboxamide (33) (Fig.  14). 

and the o ther  1,3,7-trimethylpyrido[2,3-d]pyrimidine-2,4(lH,3H)-dione (34). The former arose by 

hydro lys is  o f  the  n i t r i l e  5. For the formation of the  l a t t e r ,  apparently, the  Michael adduct [ V l  

(Fig. 14) was converted i n t o  the  open-chain intermediate [ W ]  which underwent c y c l i z a t i o n  by a 

mechanism invo l v i ng  a t tack  by the  terminal  urea n i t rogen an the  cyano group t o  a f f o r d  the 6-amino- 

u r a c i l  [ X I .  In t ramolecu lar  condensation o f  the amino group w i t h  the neighbor ing ketone would fu r -  

n ish  the format ion o f  34. 44 

The above mechanism suggests t h a t  an ac t iva ted ace ton i t r i l e ,  such as ma lonon i t r i l e  o r  e thy l  

cyanoacetate, should form the Michael adduct (35) more read i ly  (F ig .  14),  s ince such reagent i s  a 

be t te r  nuc leoph i le  than a ketone. The adduct 35 should be converted more r e a d i l y  i n t o  the  open- 

chain in termedia te  [ Y ]  since the a-proton o f  35 i s  more acidic than t h a t  i n  [ V l .  Cyc l i za t i on  t o  

the  6-aminouracil intermediate [ I ]  and subsequent formation o f  the  b i c y c l i c  product 36 should a lso  

occur read i l y .  Ac tua l l y ,  when &was t reated wi th  these reagents, 7-amino-6-cyano-1 ,3-dimethyl- 

pyrido[Z,3-d]pyrimidine-2,4(1H,3H)-dione (m) and 7-amino-6-ethoxycarbonyl-1,3-dimethylpyrido[2, 

3-dlpyrimidine-2,4(1H,3H)-dione (m), respect ive ly ,  were obtained. 

App l ica t ion  of t h i s  new react ion  t o  the  5-cyanouridine d e r i v a t i v e  (2, Fig. 15) which was Pre- 

pared i n  two-steps from the known 5-bromouridine (21) yielded the protected nucleosides (40-42) i n  

exce l l en t  y i e l d .  A f te r  hydrogenolysis of the  benzyloxymethyl group fo l lowedby ac idhydro lys is ,  com- 

pounds 40 and 42 gave the corresponding novel type o f  b i cyc l i c  nucleosides 43 and 5. respect ive ly .  

The 6-cyano d e r i v a t i v e  (44) was not obtained d i r e c t l y  from 41, bu t  it was prepared from the 6-car- 

boxamide in termedia te  (413.~~ Some 1-ribosylpyrido[2,3-dlpyrimidines have been synthesized by 

condensation of the  s i l y l a t e d  base w i th  a r i bosy l  ha l i de  as po ten t i a l  ant i tumor agents.46 Some- 

what s i m i l a r  nucleosides, 8- r ibosy lp ter id ines ,  have also been synthesized by r a t h e r  elaborate 

procedures. 
47 
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The pyridoC2.3-dlpyrimidine r i n g  system i s  found i n  a number o f  b i o l o g i c a l l y  a c t i v e  cam- 

pounds,40 inc lud ing a n t i t ~ m o r , ~ '  a n t i b a ~ t e r i a l , ~ '  ant imalar ia l ,51 a n t i h ~ ~ e r t e n s i v e , ~ '  a n t i a l l e r -  

gic,53 a n a l g e ~ i c , ~ '  a n t i p h l o g i ~ t i c , ~ ~  an t i py re t i c ,% and a n t i c o n ~ u l s i v e ~ ~  a c t i v i t i e s .  We now have 

easy assess t o  t h i s  important r i n g  system 

It i s  c l ea r  t ha t  these novel he te rocyc l i c  r i n g  t ransformat ion react ions  have opened up new 

p o s s i b i l i t i e s  f o r  the  f a c i l e  syntheses of many spec i f i ca l l y - subs t i t u ted  heteroc,vcles and phenols 

which are no t  r e a d i l y  accessible by other procedures. Further invest iga t ions  i n t o  t h i s  f r u i t f u l  

area are underway i n  our laboratory.  
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