SIX-MEMBERED ZWITTERIONIC MALONYLHETEROCYCLES

Thomas Kappe

Institute of Organic Chemistry, University of Graz, A-8010 Graz, Austria

Malonylheterocycles, such as 4-hydroxy-2-pyrones and -2-pyridones, 6-hydroxy-pyrimidin-4-ones, 4-hydroxy-coumarins and -2-quinolones, or barbituric acids are acidic compounds with pK_a values ranging usually between 4,0 and 6,0. The negative charge localized in the malonate anion moiety of a heterocyclic system can be compensated in two different ways yielding zwitterionic compounds:

A
$$b$$
 $a=0$, $b-c=C=C$ Pyrones

 $a=c=N$, $b=d=C$ Pyrimidines ($\frac{c}{2}$)

 $a=NR$, $b-c=C=C$ Pyridones

 $a=c=N$, $b=d=C$ Pyrimidines ($\frac{c}{2}$)

 $a=N$, $c=S$, $b=d=C$ 1,3-Thiazines ($\frac{c}{2}$)

 $a=c=N$, $b=C$ Pyrimidones

 $a=N$, $c=0$, $b=d=C$ 1,3-Oxazines ($\frac{d}{2}$)

 $a=0$, $b-c=benzo$ Coumarins

 $a=c=d=N$, $b=C$ 1,3,5-Triazines ($\frac{c}{2}$)

 $a=NR$, $b-c=benzo$ Quinolones ($\frac{c}{2}$)

 $a=b=c=N$, $d=C$ 1,2,3-Triazines ($\frac{c}{2}$)

 $a=b=c=N$, $d=C$ 1,2,3-Triazines ($\frac{c}{2}$)

Both types of compounds have been studied by us in recent years. Synthetic routes to pyridinium, sulfonium, phosphonium- and iodonium-ylides have been developed. Especially the reactive iodonium-ylides were found to be versatile synthons in the chemistry of malonylheterocycles (and generally in the field of 1,3-dicarbonyl systems); the 2-quinolone system ($\underline{1}$) beeing most thoroughly studied. Since about 1971 a number of six-membered mesoionic compounds of the general formula \underline{B} have been prepared by us and others and their chemistry studied. The synthesis of these compounds requires appropriate substituted amidines or α -amino-N-heterocycles (for $\underline{2}$ and $\underline{5}$), thioamides (for $\underline{3}$), amides (for $\underline{4}$) and triazenes (for $\underline{6}$) as substrates, and reactive malonic acid derivatives (such as carbon suboxide, chlorocarbonyl ketenes or trichlorophenyl malonates) or "azamalonyl" derivatives (for $\underline{5}$), respectively, as reagents. Some of the mesomeric betaines undergo 1,4-dipolar cycloadditions with acetylenic or ethylenic dipolarophiles. A number of type \underline{B} compounds are rearranged at higher temperatures via ketene intermediates to other heterocyclic ring systems.

W. Friedrichsen, Th. Kappe and A. Böttcher, <u>HETEROCYCLES</u> 19, 1083-1148 (1982).