ELECTRON-DEFICIENT PORPHYRINS. 1. PERFLUOROALKYLPORPHYRINS

H. Ogoshi, <u>M. Homma</u>, Y. Aoyama, and K. Aoyagi Department of Material Science, Technological University of Nagaoka, Nagaoka, Nigata 949-54, Japan

The redox property of the porphyrin macrocycle can be controlled by changing the central metal. On the other hand, only a little attention has so far been paid to the possible control of metal redox property by changing the peripheral substituents of porphyrin. We are especially interested in electron-deficient porphyrins having highly electron-withdrawing, yet chemically stable substituents. The trifluoromethyl group meets this criterion.

The oximation of benzyl trifluoroacetoacetate with HNO_2 followed by reductive condensation with acetylacetone gave the trifluoromethylpyrrole (<u>1</u>) (25%). Reduction of (<u>1</u>) with borane afforded the pyrrole (<u>2</u>) (86%), which was treated with $Pb(OAc)_4$ to give pyrrole (<u>3</u>) (74%). Hydrogenolysis of (<u>3</u>) to give (<u>4</u>) followed by decarboxylative condensation in the presence of $Cu(OAc)_2$ or $Zn(OAc)_2$ led to the formation of the Cu(II) or Zn(II) complex of the tetraperfluoroalkyl analogue of etioporphyrin (<u>5a</u>, <u>5b</u>). The free base porphyrin (<u>5c</u>) was obtained either by solid phase pyrrolysis of (<u>4</u>) followed by aerial oxidation or by demetallation of <u>5a</u> in strongly acidic media. The absorption maxima of (<u>5a</u>)-(<u>5c</u>) are shown in the Table together with those of the free base and Cu(II) complex of octaethylporphyrin (OEP).

	(<u>1</u>)	$R_1 = COCH_3$, $R_2 = CH_3$	Electron	ic Absor	rption	Max	ima	(nm)	۱ ـ
R_1 R_2 R_3 R_3		$R_3 = CO_2Bz$	comp	solvent	Soret	β		α	
	(<u>2</u>)	$R_1 = C_2 H_5$, $R_2 = C H_3$	<u>5a</u>	$\operatorname{CH}_2\operatorname{Cl}_2$	405	532		568	
		$R_3 = CO_2Bz$	<u>5b</u>	^{СН} 2 ^{С1} 2	403	5	533	565	
н	(<u>3</u>)	$R_1 = C_2 H_5$, $R_2 = C H_2 O A c$	<u>5c</u>	CH2C12	407	504	539	579	633
		$R_3 = CO_2Bz$	OEPCu(II)	CHC13-	399	522		560	
/	(<u>4</u>)	$R_1 = C_2 H_5$, $R_2 = C H_2 O A c$		сн _з он					
	3	$R_3 = CO_2 H$	OEPH ₂	с ₆ н6	400	498	532	568	622
	$\overline{}$	$(\underline{5a})$ M = Cu(II)							
(M)	•	$(\underline{5b})$ M = Zn(II)							
N N	<u>≻</u> се	(5c) M = 2H							
		5							
CF ₃									