HOST-GUEST COMPLEX FORMATION BY AN OPTICALLY ACTIVE PARACYCLOPHANE IN WATER

<u>Ichiro Takahashi</u>, Kazunori Odashima, and Kenji Koga*

Faculty of Pharmaceutical Sciences, University of Tokyo

Hongo, Bunkyo-ku, Tokyo 113, JAPAN

Previously we have reported the crystallographic and NMR spectral studies showing that CP44 (1), soluble in acidic water (pH<2), forms inclusion host-guest complexes with hydrophobic aromatic guests in a particular geometry. For application of this system to asymmetric reactions, we carried out the synthesis of TCP44 (2), containing the units derived from L-(+)-tartaric acid (Scheme): This is the first synthesis of a chiral, water-soluble paracyclophane.

Ha

upfield shift on ^{1}H NMR signals of guest \mathcal{I} , showing that host \mathcal{I} forms ^{1}H NMR signals of guest \mathcal{I} , showing that host \mathcal{I} forms ^{1}H NMR signals of guest \mathcal{I} , showing that host \mathcal{I} forms ^{1}H OME ^{1}H a strong complex, comparable to that by host \mathcal{I} (Table). Under similar conditions, formation of diastereomeric complexes between \mathcal{I} and \mathcal{I} - ^{1}H -mandelic acid is evidently observed. Further studies aiming asymmetric synthetic reactions are now in progress.

Table Changes of 1 H NMR chemical shifts of \mathcal{L}

				T'M ALLES
Host	$\Delta\delta(Ha)\Delta\delta(Ha)$	o) 48 (Hc)	(D)HO	ACCH(D)
2 (pD 1.2)	-1.75 -0.6	1 -1.62	_	// Hb
1 (pD 1.2)	-1.90 -0.5	9 –1.75	2	Hc
Δδ= δ(Host+G	uest)-δ(Guest), [2]=[1]≃5.0x10 ⁻² M. [7]=2.5x10 ^{−2} M, in D0	01-D ₀ 0 (pD 1.2).

- 1) K. Odashima, A. Itai, Y. Iitaka, and K. Koga, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 2504 (1980).
- 2) K. Odashima, A. Itai, Y. Iitaka, Y. Arata, and K. Koga, Tetrahedron Lett., 21, 4347 (1980).