CHEMICAL SYNTHESIS AND BIOLOGICAL ACTIVITY OF 5'-"CAPPED" 2',5'-OLIGOADENYLATES

Jiro Imai and Paul F. Torrence

Laboratory of Chemistry, National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, U. S. National Institutes of Health, Bethesda, Maryland 20205

The interferon-induced enzyme, 2-5A synthetase, effects the conversion: $nATP \rightarrow pppA(pA)_{n-1}^{+}$ (n-1)ppi. However, this enzyme can also add adenylate residues, in 2',5'-linkage, to a variety of nucleotides or oligonulceotides supplied as primers. In one such reaction, originally reported by Ball and White, diadenosine tetraphosphate becomes 2'-adenylated to give the products A5'pppp5'A2'(p5'A)_n. In order to provide an independent chemical confirmation of the structure of these enzymatic products, and to provide analogues that would be useful in further delineating the relationship between 2-5A structure and activation of the 2-5A-dependent endoribonuclease, we have chemically synthesized a number of derivatives of 2',5'-oligoadenylates "capped" at the 5'-terminus with adenosine polyphosphates.

The oligonucleotides A5'pp5'A2'pA2'pA(Ap₂A₃) and A5'ppp5'A2'pA2'pA (Ap₃A₃) were prepared by reaction of AMP or ADP, respectively, with the 5'-phosphoroimidazolide of A2'pA2'pA. A5pppp5'A2'(p5'A)_n (n = 1, Ap₄A₂; n=2, Ap₄A₃; n=3, Ap₄A₄) were synthesized by reaction of p5'A2'(p5'A)_n (n=1 \circ 3) with adenosine 5'-trimetaphosphate. All structures were confirmed with ¹H and ³¹P NMR, and by direct comparison with enzymatic products.

In extracts of mouse L cells programmed with encephalomyocarditis virus RNA, Ap_4A_4 and Ap_4A_3 were approximately equipotent with 2-5A as inhibitors of protein synthesis ($IC_{50} \sim 10^{-9}M$). The oligomers Ap_3A_3 and Ap_4A_2 were approximatley 100 x less active than 2-5A, and Ap_2A_3 was without discernable activity. Thus the order $Ap_4A_4 \sim Ap_4A_3 \sim 2-5A \Rightarrow Ap_3A_3 \sim Ap_4A_2 \Rightarrow Ap_2A_3$ was obtained. When affinity for the 2-5A-dependent endonuclease was determined (by displacement of $2-5A[^{32}p]$ -pCp from endonuclease), all of the analogues as well as 2-5A itself has similar affinities for the endonuclease except for Ap_4A_2 which was bound to the endonuclease ~ 100 x less effectively.

These results show that blocking of the β or γ phosphates of the translational inhibitors ppA2'pA2'pA or pppA2'pA2'pA leads to a loss of ability to activate the 2-5A-dependent endonuclease even though these oligomers bind to the endonuclease as well as 2-5A itself. The results obtained with the tetraphosphate Ap₄A₃ and Ap₄A₃ confirm the earlier assigned structures and the biological activity of the products of the 2-5A synthetase reaction.