REACTIONS OF VINIMIDINIUM SALTS OF FURAN DERIVATIVES

¹Department Organic Chemistry Slovak Techn. University, Bratislava, Czechoslovakia

The reactions of vinamidinium salts were not studied in the heterocyclic series till now. The formation of 5-N,N-dialkylamino-2-furfurylidene-N,N-dialkylamonium salts /T/ with pentamethinium structure gives possibility to search these reactions on the furans heterocyclic structure. These compounds have an increased electron density in the position 4 which gives the possibility to use them in electrophilic substitutions. New substituents enter in the β -position of furan nucleus and after hydrolysis of these vinamidinium salts with basic aqueous solution afford 4,5-disubstituted-2-furaldehydes. By this method 4-nitro- and 4-halogen-2-furaldehydes were prepared.

The acylation of vinamidinium salts proceeded with advantage by using reactive acylamides by catalytic action of POCl₃ and HClO₄. R'=H.CH₂Cl₃CHCl₃.CF₅

$$I \xrightarrow{R'CONR_2} \begin{bmatrix} R_2N - O \\ \oplus \\ R_2N = O \end{bmatrix} 2CIO_4 \xrightarrow{H_2O} R_2N - O CHO$$

$$R_2N = O CHO$$

The pentamethinium salts of 5-substituted-2-furaldehydes have the sufficient electron density in the β -position to react with the appropriate carbonyl compounds. The aromatic character of furan nucleus being restored after hydrolysis and the substituted β -hydroxymethylderivatives of furan were formed.

ArCHO
$$\frac{I}{HCIO_4}$$
 $\begin{bmatrix} R_2N & \bigoplus \\ A_1HC \end{bmatrix}$ $CH=NR_2$ $\begin{bmatrix} \bigoplus \\ R_2N & \bigoplus \\ A_1HC \end{bmatrix}$ $2CIO_4$ $\begin{bmatrix} \bigoplus \\ H_2O \end{bmatrix}$ R_2N CHO

90-95%, vield

²Inst. Organic Chem. and Blochem. Czech. Akad. Sci. Prag