2-CYANOTETRAHYDROFURANS VIA CYANO-OXYSELENENYLATION

Shuji Tomoda*, Yoshito Takeuchi, and Yujiro Nomura Department of Chemistry, College of Arts and Sciences The University of Tokyo, Komaba, Meguro-ku, Tokyo 153 JAPAN

In recent years a number of biologically active natural products possessing tetrahydrofuran monety have attracted considerable attention. As an extension of our project on organoselenium chemistry using phenyl selenocyanate $(\underline{1})$, we wish to report herein a new approach to 2-cyanotetrahydrofurans, which are potentially useful precursors to intermediates of the ionophore antibiotics or other natural products, such as normuscarin.

The new approach is based on the idea that intramolecular C=C and C=O bonds of a γ , δ -unsaturated carbonyl compound could be simultaneously activated by $\underline{1}$ in the presence of SnCl_4 as catalyst. Thus treatment of 3-cyclohexene-1-carbaldehyde ($\underline{2}$) with equimolar $\underline{1}$ in dichloromethane in the presence of a catalytic amount of SnCl_4 afforded a 3:2 mixture of two stereoisomers $\underline{4}$ in 98% yield within 10 min at room temperature, presumably $\underline{\mathrm{via}}$ intermediate $\underline{3}$.

The reaction is also applicable to 5-acetyl-2-norbornene $(\underline{5})$, which possesses a ketone group. Surprisingly, $\underline{5}$ gave a single product $\underline{6}$ in 96% yield within 5 min.

The reaction can be extended also to open-chain enones. Thus 5-hexen-2-one (7) provided 8 as a 3:2 stereoisomer mixture under similar conditions (73% yield).

Stereoselectivity, versatility and limitations of the reaction will be discussed along with several other examples.