
Stereocontrolled Synthesis of Withaferin A and Withanolide D

Keiji Gamoh, Masao Hirayama and Nobuo Ikekawa Department of Chemistry, Tokyo Institute of Technology Meguro-ku, Tokyo 152, Japan

Synthesis of withaferin A($\frac{1}{2}a$) and withanolide D($\frac{2}{2}$), among the naturally occurring withanolides, have been paid the most attractive attention because of their unique structures and interesting biological activities, <u>e.g.</u> antitumor and antibacterial. Stereocontrolled synthesis of $\frac{1}{2}a$ and $\frac{2}{2}$, together with some other natural withanolides, 27-deoxywithaferin A($\frac{1}{2}b$), jaborosalactone A($\frac{3}{2}$), B($\frac{4}{2}$), D($\frac{5}{2}$) and physalolactone B($\frac{6}{2}$), will be reported. In the case of $\frac{1}{2}$, $\frac{3}{2}$, $\frac{4}{2}$ and $\frac{5}{2}$, the key intermediate (22S)-22,23-epoxide($\frac{8}{2}$), which was prepared from a readily available 22,23-bisnorcholenic acid($\frac{7}{2}$), was converted to the 25-phenylthic lactone $\frac{9}{2}$, followed by introduction of the desired substituent at C-25 to give the lactone $\frac{10}{2}$. On the other hand, the construction of the 20-hydroxylated side chain moiety of $\frac{2}{2}$ and $\frac{6}{2}$ was accomplished by direct *r*-coupling reaction of the suitable enclate with (20R)-20-MOM-22-aldehyde ($\frac{16}{2}$), leading to natural configuration at C-22. A/B Ring functionality in $\frac{1}{2}$ and $\frac{2}{2}$ was stereoselectively introduced by a facile allyl sulfoxide-sulfenate rearrangement. The structures of these synthetic withanolides were confirmed by direct comparison with natural samples.

