PALLADIUM CATALYZED POLYHETERO-CLAISEN REARRANGEMENT OF

3-ALLYLTHIO-1, 2, 4-TRIAZIN-5(2H)-ONES

Masato Mizutani and Yuzuru Sanemitsu
Yoshinao Tamarul and Zen-ichi Yoshida

Pesticide Division, Institute for Biological Science, Sumitomo Chemical Co. Ltd., 4-2-1, Takatsukasa, Takarazuka, Hyogo, Japan

3-Allylthio-1,2,4-triazin-5(2H)-ones(1) are known to exist as a mixture of tautomers $\stackrel{1A}{\sim}$ and $\stackrel{1B}{\sim}$. Spectoroscopic analysis shows $\stackrel{1A}{\sim}$ is the main tautomer². Based on these precedents, the polyhetero-Claisen rearrangement of $\stackrel{1}{\sim}$ was undertaken with the expectation of achieving S \rightarrow N-4 allylic transposition.

The S \rightarrow N allylic rearrangement was found to be nicely catalyzed by $PdCl_2(PhCN)_2^3$. The reaction proceeded under mild condition to give the rearranged products in high yields. The regionselectivity is highly dependent on the substitution pattern of the allylic moiety, irrespective of R^1 . When $R^2=R^3=H$, the alkylation takes place selectively at N-4, which seems to reflect more or less the distribution of tautomers lA and lB. When $R^2=CH_3$, it provides the N-2 product. The reversed selectivity might be explained in terms of a pseudo A(1,3) strain between C-5 carbonyl oxygen and terminal methyl group in a chair like transition state. These reactions proceed with the kinetic nature.

The thiones 2 and 3 were found to cyclize smoothly in the presence of ${\rm H_2SO_4}$

to afford the fused heterocyclic systems $\frac{4}{N}$ and $\frac{5}{N}$ in high yields(78-100%). This present method serves an efficient synthesis of the fused heterocyclic system.

Pd(II) Catalyzed S - N Allylic Rearrangement

		•				-
1	R1	R ²	R ³	yield	1(2+3)	2/3
a	Н	Н	H	86	8	88/12
ь	CH3	H	H	90	*	88/12
c	Ph	H	H	88	*	95/ 5
đ	H	СH3	H	92	8	30/70
е	Ph	сн ₃	H	100	8	29/71
£	H	Н	CH ₃	64	8	74/26

- 1. Department of Synthetic Chemistry, Kyoto University
- 2. J. Gut et al., Collection Czechoslov. Chem. Commun., 27, 1886(1962)
- 3. Y. Tamaru, M. Kagotani and Z. Yoshida, J. Org. Chem., 45, 522(1980)