REACTIONS OF HALOKETENES WITH ETHYL N(2-PYRIDYL)FORMIMIDATES AND 2-ARYLIDENEAMINOPYRIDINES

Nobuya Katagiri, Ryuji Niwa, and Tetsuzo Kato Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Most typical reaction of haloketenes with C=N bonds is the cycloaddition to lmines to give 2-azetidinones, whereas the reaction with compounds bearing a conjugated C=N bond gives [2+4] cycloadducts.

In this paper we wish to report the reactions of haloketenes with ethyl N-(2-pyridyl) formimidates and 2-arylideneaminopyridines, both of which have a C=N bond conjugated with the ring C=N bond.

When ethyl N-(2-pyridyl)formimidates ($\underline{1}$, R^3 = OEt) were allowed to react with dichloroketene in ether (or DME), three compounds, pyrido[1,2-a]pyrimidin-4(4H)-ones ($\underline{2}$, R^1 = C1, R^3 = OEt), 2-azetidinones ($\underline{3}$, R^3 = OEt), and esters ($\underline{4}$, R^3 = OEt, R^4 = Et or Me) were obtained in good yields. Similarly, 2-arylidene-aminopyridines ($\underline{1}$, R^3 = aryl) also reacted with haloketenes giving compounds $\underline{2}$, $\underline{3}$, and $\underline{4}$ (R^3 = aryl). The esters $\underline{4}$, on treatment with triethylamine, cyclized to the imidazo[1,2-a]pyridines $\underline{5}$. Treatment of $\underline{2}$ (R^1 = C1, R^3 = aryl) with alcoholic potassium hydroxide gave the imidazo[1,2-a]pyridines $\underline{6}$, while $\underline{2}$ (R^2 = 6-Me), on heating, were transformed into the 1,8-naphthylidines $\underline{7}$.