INTRODUCTION OF β -KETOALKYL GROUPS AT 4-POSITION OF PYRIDINE USING SILYL ENOL ETHERS

Kin-ya Akiba, Yoshihiro Nishihara, and Makoto Wada Department of Chemistry, Faculty of Science, Hiroshima University Higashisenda-machi, Hiroshima 730, Japan

Recently we reported three new methods to introduce alkyl and aryl substituents at 4position of pyridine with better than 99% selectivity.¹ Here we describe further approach to this problem using silyl enol ethers in order to introduce β -keto alkyl groups at 4-position of pyridine with almost complete selectivity. When pyridine is quaternized with ethyl chloroformate in dichloromethane and trimethylsilyl enol ethers of acetone and acetophenone were added, the corresponding 1, 4- (1') and 1, 2-dihydropyridines (2') were obtained in 54, 37% and 69, 21% yields, respectively. The same type of reaction was carried out using β , β , β -trichloroethyl chloroformate as quaternizing reagent to give better yields and almost complete regioselectivity as shown below. When t-butyldimethylsilyl enol ether of acetophenone was used, 3 was obtained quantitatively and was converted to 1 in high yield. Furthermore, methyl nicotinate and trimethylsilyl enol ether of 3-pentanone gave 4 in 71% yield.

+ CICO ₂ CH ₂ C	CCI3			2 ^{CCl} ₃ 0 ^C 00 2 ²		+		3
Entry	R	R ¹	R ²	Solvent	<u> </u>	id ^{a) (°} 2 ^{b)}	<u> </u>	MeOCO
1	MeaSi	Me	Ph	CH3CN	quant.	0	0	¹ _N, – ↓ ↓
2	3	Me	Et		83	0	0	O=Ċ-OCH2CCI3
3					83	0	6	
4		Ph	OMe		quant.	0	0	
5		н	Ph		65	22	4	
6 t-BuMe ₂ Si		<u>н</u>	Ph	CHoClo	trace		quant.	

a) Isolated yield by flash column chromatography
b) Product ratio(1:2) was determined by ¹H-NMR

K. Akiba, H. Matsuoka, and M. Wada, <u>Tetrahedron Lett.</u>, 22, 4093 (1981);
K. Akiba, Y. Iseki, and M. Wada, <u>ibid.</u>, 23, 429 (1982); <u>ibid.</u>, 23, 3935 (1982).