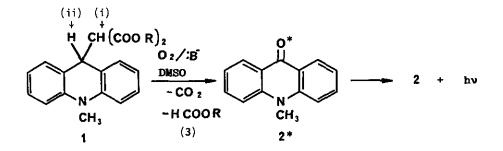
BASE-INDUCED CHEMILUMINESCENCE OF N-METHYL-9-(DICARBOALKOXYMETHYL)ACRIDANES1)


<u>Nobutaka SUZUKI</u>, Toshio TSUKAMOTO, and Yasuji IZAWA Department of Industrial Chemistry, Faculty of Engineering, MIE University, Tsu, MIE 514, JAPAN

A new chemiluminescent system (1) which has a -CH-C- function in it and gives a very effective fluorescent product, N-methylacridone (2), was found to give chemiluminescence light emission under basic oxidative conditions. One mole of 1 could be oxidized twice (first at i and then at ii). Hence, it could give two photons a mole. The mechanistic investigation was performed.

0

N-MethyI-9-(dicarboalkoxymethyl)acridanes (1: R = Me, Et, and Ph: 10^{-4} M) gave long-lasting chemiluminescence ($\tau_{1/2} \sim 40$ h) with moderate intensity (ϕ_{CL} : $10^{-4} \sim 10^{-5}$ einstein/mol) at 70°C in basic dimethyl sulfoxide (DMSO) upon oxidized by molecular oxygen.

The final product was 2, which was proved to be the emitting species (emitter) after a first strong flash. t-Butyl formate (3), which was formed by transesterification of methyl, ethyl, and phenyl formates generated once by $t-Bu0^-$ anion respectively under the conditions, was also isolated as the product.

1 $\Phi_{CL}^{a)}$ (einstein/mol) x 10 ⁵	max (max)		
	CL ^{b)}	FL in 0_2^{c}	FL in Ar ^{C)}
8,20	435	440	416
7.26	435	440	364
1.27	435	440	470
		435, ^{b)} 440 ^{c)}	
	8.20 7.26	8.20 435 7.26 435	$\Phi_{CL}^{a)}$ (einstein/mol) x 10 ⁵ $CL^{b)}$ FL in 0 ₂ ^{c)} 8.20 435 440 7.26 435 440

(nm)

Table 1. CL of the Acridane Compounds (1) at 70°C.

a) Relative to the Hasting's standard. b) Slit width 40 nm. c) Slit width 24 nm.

1) Cyclic peroxides. 10.