A NOVEL ALKYNYLATION REACTION OF EPOXYALCOHOLS

Masahiko Yamaguchi and Ichiro Hirao Department of Industrial Chemistry, Kyushu Institute of Technology Sensui-cho, Tobata, Kitakyushu 804, Japan

The ring opening reaction of the epoxyalcohols (<u>1</u>) with various nucleophiles was actively investigated by many authors to afford 1,2- and/or 1,3-diols. Previously, we have reported an efficient method for the synthesis of β -hydroxyacetylenes by the reaction of lithium acetylides with oxiranes in the presence of a Lewis acid. (M.Yamaguchi and I.Hirao, Tetrahedron Lett., <u>24</u>, 391 (1983).) We then applied the method to the epoxyalcohols (<u>1</u>) and found a new type of the ring opening product. Thus, lithium acetylides were treated with <u>1</u> followed by boron trifluoride etherate at -78°C in tetrahydrofuran to give novel 1,2-diols (<u>2</u>) as well as 1,3-diols (<u>3</u>). The former (<u>2</u>) was considered to be formed by the rearrangement of <u>1</u> followed by the ring cleavage at the less hindered site, while the latter by the direct substitution reaction at 2-carbon of 1 (Scheme).

It was also observed that trans-epoxides afforded $\underline{2}$ as the major product and cis-epoxides gave $\underline{3}$ predominantly (Table). All these products are stereochemically pure and the reaction seems to proceed in a highly stereospecific manner.

OXIRANE	ACETYLENE	PRODUCT RATIO $\frac{2}{2}: \frac{3}{2}$	TOTAL YIELD (%)
Landon on	PhC ≡ CH	55 : 45	94
	$n-AmC \equiv CH$	80 : 20	87
Long OH	$PhC \equiv CH$	14 : 86	77
	n-AmC ≡ CH	50 : 50	quant.
Отин ОН	$PhC \equiv CH$	72 : 28	77
	$n-AmC \equiv CH$	81 : 19	81
ОН	PhC ≡ CH	42 : 58	82