AIR OXIDATION REACTION OF DIAZOALKENES EFFICIENT OXYGEN-TRANSFER REACTION TO GIVE EPOXYKETONES

Tsutomu Miyashi, Masaki Kamata, Yoshinori Nishizawa, <u>Toshio Mukai</u>
Photochemical Research Laboratory and Department of Chemistry
Faculty of Science, Tohoku University, Sendai 980, Japan

We have reported that allyldiazomethane $\frac{1}{12}$ (n=1, R₁=C₆H₅, R₂=H) undergoes a nitrene-type 1,1-cycloaddition to give exo-6-phenyl-1,2-diazabicyclo[3.1.0]hex-2-ene $\frac{2}{12}$. In order to explore the generality of the 1,1-cycloaddition reaction of diazoalkenes, reactivities of homologous diazoalkenes, $\frac{1}{12}$ (n=2, R₁=C₆H₅, R₂=H), $\frac{1}{12}$ (n=2, R₁=R₂=C₆H₅), $\frac{1}{12}$ (n=3, R₁=C₆H₅, R₂=H) and $\frac{1}{12}$ (n=4, R₁=C₆H₅, R₂=H) were tested, generating from the sodium salts of the corresponding tosylhydrazones. It was found that diazoalkenes $\frac{1}{12}$ and $\frac{1}{12}$ did not undergo the 1,1-cycloaddition but the 1,3-dipolar addition to give $\frac{2}{12}$ (n=3) and $\frac{2}{12}$ (n=4) under inert atmosphere, whereas $\frac{1}{12}$ and $\frac{1}{12}$ were unexpectedly stable and remained unchange for more than 2 months when kept under inert atmosphere. In contrast with these reactivities under inert atmosphere, diazoalkenes $\frac{1}{12}$ and $\frac{1}{12}$ were facilely oxidized by molecular oxygen, giving oxygen-transfer products, epoxyketones $\frac{4}{12}$ (R₁=C₆H₅, R₂=H) and $\frac{4}{12}$ (R₁=R₂=C₆H₅) when $\frac{1}{12}$ and $\frac{1}{12}$ were exposed to air. It is of interest to note that singlet oxygen did not give such epoxyketones at all. A possible mechanism will be discussed.

$$(CH_2)_n \xrightarrow{R_1} (CH_2)_n \xrightarrow{C_6H_5} (CH_2)_n \xrightarrow{C_6H_5} (CH_2)_n \xrightarrow{C_6H_5} (CH_2)_n \xrightarrow{R_1} (CH_2)_n \xrightarrow{R_2} (CH_2)_n \xrightarrow{R_1} (CH_2)_n \xrightarrow{R_1} (CH_2)_n \xrightarrow{R_2} (CH$$

References: 1) Y. Nishizawa, T. Miyashi, T. Mukai, <u>J. Am. Chem. Soc., 102</u>, 1176 (1980); T. Miyashi, Y. Fujii, Y. Nishizawa, T. Mukai, <u>ibid., 103</u>, 725 (1981); see also Ref.2

A. Padwa, H. Ku, <u>Tetrahedron Lett</u>., 1009 (1980); A. Padwa, A. Rodoriguez, <u>ibid</u>., 187 (1981)