THERMAL CIS-TRANS ISOMERIZATION OF 5-ETHYL-2-OXO-4-PIPERIDINEACETIC ACID AND RELATED COMPOUNDS

Tozo Fujii, <u>Masashi Ohba</u>, Shigeyuki Yoshifuji, and Shigeaki Akıyama

Faculty of Pharmaceutical Sciences, Kanazawa University,

Takara-machi, Kanazawa 920, Japan

Thermal cis-trans isomerization of $1-(2-arylethy1)-5-ethy1-2-oxo-4-piperidineacetic acids (type <math>I \longrightarrow \Pi$) has been an important process in our chiral syntheses of the Alangium alkaloids such as emetine, ankorine, alangicine, alangimarckine, desmethylpsychotrine, etc. In order to investigate the effect of the N-substituent on this reaction, (\pm)-Ia-d, (-)-Ie-i, (\pm)- Π a-d, and (\pm)- Π e-i were prepared and the progress of each of their cis-trans isomerizations at 180°C was followed by determining the isomer ratio in the reaction mixture according to the previously reported ¹³C NMR spectroscopic method. It has been found that in all cases the reaction comes to equilibrium, within 8-130 min, where the cis and trans isomers exist in a ratio of 1:2. A higher and/or bulkier N-substituent tends to decrease the rate of attainment of equilibrium between both isomers.

a:
$$R = H$$
b: $R = Me$
c: $R = Et$
CO2H
$$Et$$
d: $R = PhCH_2$
or MeO
h: $R = MeO$
f: $R = MeO$
i: $R = MeO$