OXIDATION OF HETEROCYCLIC &-DICARBONYL COMPOUNDS

Wolfgang Stadlbauer and Thomas Kappe

Institute of Organic Chemistry, University of Graz, A-8010 Graz, Austria

3-Alkyl- and 3-arylsubstituted 4-hydroxy-2-quinolones ($\underline{1}$) having an enolized B-dicarbonyl molety were found to react with oxidizing agents such as 3-chloro-peroxybenzoic acid, alkaline hydrogen peroxide, t-butylhydroperoxide or UV-irradiation in the presence of oxygen to yield 3-hydroxy-3-R-quinoline-2,4-diones ($\underline{2}$). Analogs of $\underline{2}$ ($\mathbb{R}^1 = n$ -heptyl, n-nonyl) have been isolated from bacterium pyocyaneus (pseudomonas aeruginosa)¹. Oxidation of the 3-chloro compound ($\underline{1}$, $\mathbb{R}^1 = Cl$) leads to quinisatine hydrate $\underline{3}$.

The extension of this reaction to barbituric acids ($\underline{4}$) shows, that the oxidation leads in the first step to the corresponding 5-hydroxy-barbituric acids $\underline{5}$. In alkaline hydrogen peroxide this step is followed immediately by rung contraction under the loss of isocyanate and formation of the oxazole-2,4-dione $\underline{6}$, which is also a side product in the UV-oxidation reaction of the barbituric acids $\underline{4}$.

