A NOVEL PHOTOCHEMICAL RING TRANSFORMATION OF 4-PYRIMIDINONES. FORMATION OF 5-CARBOXYPYRIMIDINIUM BETAINES

Tamiko TAKAHASHI, a Shun-ichi HIROKAMI, a Masanori NAGATA, a and Takao YAMAZAKI b

(a) Laboratory of Chemistry, Toyama Medical and Pharmaceutical University, Toyama 930-01, Japan; (b) Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama 930-01, Japan

The photochemical ring transformation of 4-pyrimidinones to 5-carboxypyrimidinium betaines has been studied. Irradiation of the 4-pyrimidinones ($\underline{1}$: R_1 , R_2 , R_3 = alkyl or aryl) in acetic acid or in acetic acid-acetonitrile solution gave the betaines ($\underline{4}$: R_1 , R_2 , R_3 = alkyl or aryl; R_4 = CH_3) in 27-57% yields. The starting materials $\underline{1}$ were recovered in 31-62% yields. The betaines $\underline{4}$ were obtained from the thermal reaction of acetic acid with the Dewar 4-pyrimidinones $\underline{2}$, which were photochemically produced from $\underline{1}$. The result indicated that the Dewar 4-pyrimidinone $\underline{2}$ is the photochemical intermediate in the betaine formation. To investigate the mechanism and synthetic application of the reaction, the steric effect of α -substitution of the carboxylic acid 3 on the betaine formation was studied.

 (a) Hirokami, S.; Takahashi, T.; Nagata, M.; Hirai, Y.; Yamazaki, T. J. Org. Chem. 1981, 46, 1769.
 (b) Takahashi, T.; Hirokami, S.; Kato, K.; Nagata, M.; Yamazaki, T. ibid. 1983, 48, in press.