SYNTHESIS AND REACTIONS OF 1,2,3-TRIAZINES

Akio Ohsawa, Kentaro Yamaguchi, Terumitsu Kaihoh, Heihachiro Arai, Hidefumi Ohnishi, Hiroshi Igeta

School of Pharmaceutical Sciences, Showa University, Tokyo 142, JAPAN and Yoichi Iitaka

Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo 113, JAPAN

Monocyclic 1,2,3-triazines were synthesized and their properties were investigated.

Synthesis Oxidation of methyl- and/or phenyl-substituted \underline{N} -aminopyrazoles(\underline{I}) using Pb(AcO), afforded 1,2,3-triazines(2) although the method afforded only a trace amount of unsubstituted one (2, $R^{1}=R^{2}=R^{3}=H$). The latter was obtained by nickel peroxide-AcOH oxidation of 1 in 18% yield.

$$\begin{array}{c|c}
R^{2} & & & \\
R^{1} & & & \\
N-N & & \\
1 & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{2} & \\
N-N & \\
\end{array}$$

$$\begin{array}{c|c}
R^{2} & \\
N-N & \\
\end{array}$$

Isolated 1,2,3-triazines were moderately stable and the exact molecular structure of unsubstituted one was examined by X-ray crystallography.

Methylation of $\underline{2}$ with MeI afforded 2-methylated salts $(\underline{3})$. \underline{N} -Amination with Quaternization $\underline{0}$ -mesitylenesulfonylhydroxylamine gave \angle -imino compounds $(\underline{4})$ which existed in the monomeric form in a solution(CHCl $_3$). Although N-oxidation of 2 with m-chloroperbenzoic acid afforded the corresponding 1-oxides (5) and 2-oxides (6) when $R^1 \neq Ph$, only 2-oxides were obtained when $R^1 = R^2 = Ph$. The molecular structure of 4,5,6-triphenyl-1,2,3-triazine 2-oxide was confirmed by X-ray analysis. The methylation of the oxide $\underline{6}$ with Me₂SO₄ afforded $\underline{\text{N}}$ -methylated product($\underline{7}$) although $\underline{5}$ decomposed under the quaternizing conditions.

$$\begin{array}{c|c}
R^2 & R^3 \\
R^3 & R^3
\end{array}$$

Reduction 12 mg conditions:

$$R^2$$
 R^3
 R^3
 R^4
 R^4

Catalytic reduction of $\underline{2}$, $\underline{5}$, and $\underline{6}$ gave the 2,5-dihydro compounds($\underline{8}$, R=H). Reduction of 2 and 3 with sodium borohydride(SBH) also yielded 8(R=H) and Me). The major products of SBH reduction of the oxide $\underline{5}$ were $\underline{2}$ and $\underline{8}$, while the major products from $\underline{6}$ were 1,4,5,6-tetrahydro compounds $\underline{9}$ and or $\underline{10}$. SBH reduction of Z yielded the 1,6-dihydro compounds $\underline{11}$ as major products.

1,3-Dipolar cycloaddition of $\underline{4}$ with dimethyl acetylenedicarboxylate yielded the rearranged adducts (12). Results of other reactions

will be stated.

References: JCS Chem.Comm., 1980, 1182; JCS Chem.Comm., 1981, 1174;

Heterocycles, 17, 317 (1982).