A PRACTICAL SYNTHESIS OF 4-ARYL-1,2,3,4-TETRAHYDROISOQUINOLINES.

Hiroshi HARA, Ryuichi SHIRAI, Osamu HOSHINO, and Bunsuke UMEZAWA

Faculty of Pharmaceutical Sciences, Science University of Tokyo, 12, Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo, 162, Japan

The title compounds were readily synthesized by using a styrene oxide as a synthon. Namely, reaction of benzylamine ($\underline{1}$) and styrene oxide at 140° gave β -hydroxyphenethylamine ($\underline{2}$) regioselectively. Debenzylation of $\underline{2}$ yielded $\underline{3}$, which was treated with 80% H₂SO₄ to effect cyclization giving 4-phenyl-1,2,3,4-tetrahydroisoquinoline ($\underline{4}$) in 87% overall yield from 0-benzylvanilline. Similarly, other 4-phenyl isomers ($\underline{5}$ and $\underline{6}$) were easily prepared. However, styrene oxides having an electron donating group at the para position reacted with benzylamines to afford non-regioselectively two aminoalcohols. This problem was solved by the following method. Treatment of styrene oxide ($\underline{7}$) with BF₃·Et₂O in methanol gave solely β -methoxyphenethylalcohol ($\underline{8}$), which was easily converted into its mesylate ($\underline{9}$). Coupling of $\underline{9}$ and benzylamine ($\underline{10}$) in the presense of Hünig base at 120° for 24 hour gave β -methoxyphenethylamine ($\underline{11}$), acid treatment of which afforded ($\underline{1}$)-cherylline ($\underline{12}$) in 82% overall yield from O-benzylisovanillin.

D: BF₃•Et₂O, CH₃OH, O°, E: CH₂SO₂Cl, pyridine, F: 1) 40% CH₃NH₂ aq., CH₃OH, from O-benzyl-isovanillin 2) NaBH₄, CH₃OH, G: diisopropylethylamine, 120°, 24 hour, H: c.HCl/benzene, reflux,

^{*}Present address. Faculty of Pharmaceutical Sciences, Univercity of Tokyo,