A SYNTHESIS OF MIXED TETRAHYDROISOQUINOLINE DIMERS via p-QUINOL ACETATE Hiroshi HARA, <u>Masatoshi MURAKATA</u>, Osamu HOSHINO,

and Bunsuke UMEZAWA

Faculty of Pharmaceutical Sciences, Science University of Tokyo,

12, Funagawara-machi, Ichigaya, Shinjuku-ku, Tokyo, 162, JAPAN

A mixture of p-quinol acetate $(\underline{1})$, obtained from corypalline $(\underline{2})$ by lead tetraacetate oxidation, and isocorypalline $(\underline{3})$ (1 eq.) was treated with trifluoroacetic acid in methylene chloride at room temperature for 1 hr to give mixed tetrahydroisoquinoline dimer $(\underline{4})$ (54 %). Similarly, the reaction of $\underline{1}$ with $\underline{5}$ yielded a pair of diastereomers ($\underline{6a}$ and $\underline{6b}$), formation of which was attributable to the presence of axial dissymmetry and asymmetric carbon at l'-position, and stereostructure of the former ($\underline{6a}$) was determined by X-ray analysis. On the other hand, 6- or 7-hydroxytetrahydroisoquinoline ($\underline{7}$ or $\underline{8}$) reacted with $\underline{1}$ to afford two regioisomers ($\underline{9}$ and $\underline{10}$, or $\underline{11}$ and $\underline{12}$), respectively. However, the reaction of 1phenyl p-quinol acetate ($\underline{13}$) with 2 gave corypalline dimer ($\underline{14}$) (17%) and 1-phenyl corypalline ($\underline{15}$). In this case such a bulky phenol as 2 could not attack on 8position owing to the severe hindrance caused by the 1-phenyl group in $\underline{13}$. Therefore, $\underline{13}$ acted as an oxidant to change corypalline ($\underline{2}$) into its dimer ($\underline{14}$).

[Compound (9-12 and 14) were isolated as diacetates.]

