SOME ANIONIC REACTIONS OF Δ^2 -PYRAZOLINES

Andrzej Jończyk, Joanna Włostowska, Witold Woźniak and Maria Ludwikow

Department of Chemistry, Technical University /Politechnika/ Koszykowa 75, 00-662 Warszawa, Poland

It has been found that Δ^2 -pyrazolines 1 reacted in basic medium /typically in the presence of conc. aq. NaOH solution and a quaternary ammonium salt as a catalyst - so called catalytic two-phase, CTP, system/ with alkyl halides or electrophilic alkenes to give N-substituted Δ^2 -pyrazolines 2, and cyclopropanes 4 or cyclopropanes 7 respectively. The normal alkyl bromides or allyl halides formed the N-substituted pyrazolines 2 /yields 30-96%/, while benzyl halides the mixture of the products 2 and 4 /yields ca.80%, 2/4 ca.0.8/. On the other hand the electrophilic alkenes gave exclusively the cyclopropanes 7 in good yields.

The key intermediate in these transformations is the ambident anion 1^- that reacts irreversibly with alkyl halides either at nitrogen to give 2 or at carbon atom to give 4 via the unstable Δ^1 -pyrazolines 2. Similarly the anion 1^- can form with the electrophilic alkenes the compounds 2 and 6. However the reversible nature of these reactions, and irreversible decomposition of the Δ^1 -pyrazolines 6 shifted the equilibrium toward the formation of the cyclopropanes 2 /Scheme/.

Scheme

$$R^{1} \longrightarrow R^{3}$$

$$R^{2} \longrightarrow R^{3}$$

$$R^{2} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow R^{3}$$

$$R^{2} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow R^{3}$$

$$R^{4} \longrightarrow R^{3}$$

$$R^{2} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow R^{3}$$

$$R^{2} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow R^{3}$$

$$R^{2} \longrightarrow R^{3}$$

$$R^{3} \longrightarrow R^{3$$

These reactions present a new approach to the preparation of same funtionalized cyclopropanes via anionic reactions of the Δ^2 -pyrazolines.