METHYL MIGRATION AND DEMETHYLATION IN THE 4,5-DIMETHYL-CARBAZOLE SYNTHESIS BY TAUBER METHOD.

YUTAKA TSUNASHIMA AND MASATANE KUROKI

Shibaura Institute of Technology, Fukasaku Ohmiya-shi Saitama 330

Applicating Täuber method to synthesis of 4,5-dimethylcarbazole $\underline{2}$, we obtained the considerable amounts of $\underline{3} - \underline{5}$. The cyclization took place insufficiently at 180°C and the formation of the isomer $\underline{3}$ increased with an increase in concentration or H₀ of the acids. Considering these results, we could obtain $\underline{2}$ in good yields (over 90%) by heating $\underline{1}$ with more dilute H_2SO_4 (0.5 - 1 N) at 200°C for 24 hours.

Table 1

$$\frac{1}{24} \xrightarrow{\text{cH}_{3}} \xrightarrow{\text{cH}_{3}$$

Heating of $\underline{2}$ with acids gave $\underline{3}$ and $\underline{5}$ (Table 2), therefore, formation of the isomers is mainly attributed to the 1,2-methyl shift, and this can be understood as a result of instability of $\underline{2}$, due to a steric hindrance of two methyl groups. MINDO/2 calculations indicate that $\underline{2}$ is less stable than $\underline{3}$ by 1.46 eV. The M.O. results also show that the 4-position of $\underline{2}$ is easily protonated, and it suggests a process from $\underline{2}$ to $\underline{3}$ via protonated species <u>6</u>.

On the otherhand, $\underline{7}$ was not detected, although its stability was expected by MINDO and CNDO/2 calculations. It is logical to assume the existence of the highest potential barrier between two protonated species of $\underline{3}$ and $\underline{7}$. The formation of $\underline{4}$ in the reaction of $\underline{1}$ cannot be interpreted by the successive 1,2-shifts, because we could not find $\underline{7}$, as an intermediate expected for the reaction mechanism. The reaction giving $\underline{4}$ may be illustrated by a rout B in Scheme 2, as demonstrated by Allen et al.(J. Chem. Soc.(C), <u>1968</u>, 2406) Table 2

