THE SYNTHESIS OF NOVEL HETEROCYCLIC COMPOUNDS. DERIVATIVES OF 3H-INDOLE AND BENZOFURO[3,3a-d]ISOXAZOLE. Kiyobumi Takahashi, <u>Eisuke Kaji</u>, and Shonosuke Zen Kitasato University, School of Pharmaceutical Sciences Minato-ku, Tokyo, 108, Japan

We report here the synthesis of novel heterocyclic compounds, derivatives of 3H-indole carboxylic acids (2) and benzofuro[3,3a-d]isoxazole carboxylic acids (3) from 4-substituted 3,5-bis(methoxycarbonyl)isoxazoline-1-oxides (1) by Lewis acids as shown in Scheme 1.

That is, 1 is reacted with four fold excess Lewis acids such as titanium tetrachloride in dichloromethane at 0°C. The products (2 and/or 3) are isolated by chromatography in the usual way. The results are summarized in Table 1. Substituent effects indicate that electron-attracting group (such as halogen) in 1 is favorable to form 3.

The reaction mechanism of these ring-transformations is also proposed.

	Table 1.			
1	Yield (%) of products			
R	2	0-p-nitrobenzoate	3	mp.°C
Н	85	mp. 122~4	-	-
p-C1	8	68~70(dec.)	81	107~8
p-Br	11	_	73	101~2
p-F	12	-	77	97~8
- p-CH ₂	24	$115\sim 6(0-acetate)$	-	_

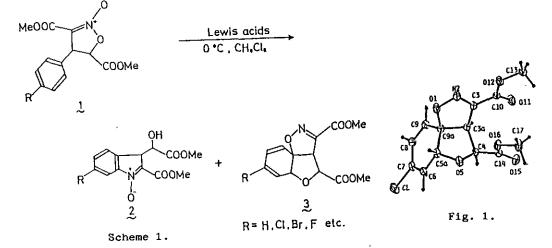


Fig.1:Structure of the Molecule of $\underline{3}$ and Numbering of Atoms.