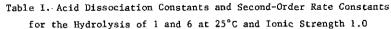

HYDROLYSIS OF NUCLEOSIDES RELATED TO FLUORESCENT MINOR COMPONENTS OF PHENYLALANINE TRANSFER RIBONUCLEIC ACIDS


Taisuke Itaya and Tsunehiro Harada

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan

The rates of hydrolysis of the glycosidic bond of $3-\beta-D$ -ribofuranosylwye (1), the most probable structure for wyosine from <u>Torulopsis utilis</u> tRNA^{Phe}, were compared with those of the nucleosides (4, 5, and 6) structurally related to 1. It has been found that the pseudo-first-order rate constants (\underline{k}_{obs}) for the hydrolysis of 4 and 5a,b in 0.1 N HCl aq. at 85°C are of the same order of magnitude (6.3 x 10⁻³, 4.4 x 10⁻³, and 3.3 x 10⁻³ min⁻¹, respectively) and that the hydrolysis of 1 at 25°C in 0.1 N HCl aq. (\underline{k}_{obs} 4.4 x 10⁻¹ min⁻¹) takes place 9.8 x 10⁵ times as fast as that of 5a and at a rate comparable to that of 6b (\underline{k}_{obs} 9.8 x 10⁻¹ min⁻¹). Acidic hydrolysis of 1 and 6 has been shown to proceed through their mono- and diprotonated species and the second-order rate constants (\underline{k}_1 and \underline{k}_2) are given in Table I. These results suggest that the partial structure 6b in 1 is responsible for the unusual lability of 1 and steric assistance is one of the major effects of the 4-methyl group.

Compound 1 has also proved to undergo general-base-catalyzed hydrolysis to 2 and 3 competitively. However, 1 has been shown to be quite stable at pH 7.00 and 25°C for 40 days.

 $Rib = \beta - D - ribofuranosyl$

			······	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-
losyl	Compound	рКа	$k_1 (1 \text{ mol}^{-1} \text{ m})$	in ⁻¹) <u>k</u> 2	(1 mol ⁻¹ min ⁻¹)	-
	for the	Hydrolysis	or land 6 at 25	c and tonic	Strength 1.0	_

	-		I ·	-2	
$a: \mathbf{R} = \mathbf{H}$	1	3.06 ± 0.05	3.5	10	
b: $\mathbf{R} = \mathbf{M}\mathbf{e}$	~ 6ъ	3.99 ± 0.06	18	23	
c: R = Et	∿ 6c ∖	3.86 ± 0.07	28	42	
d: $\mathbf{R} = \mathbf{Me}_2 \mathbf{CH}$	ç وq	3.83 ± 0.04	130	140	