SYNTHESIS AND BIOACTIVITIES OF FUSED PERIMIDINE DERIVATIVES

Kang-Chien Liu and Hsiu-Ho Chen

School of Pharmacy, National Defense Medical Center, Taipei, China.

As a part of continuing study of bridgehead nitrogen heterocycles, a series of ring-fused perimidine derivatives were synthesized. The synthetic reactions were performed starting from 2-mercaptoperimidine (Ia), which was obtained from 1,8-diaminonaphthalene by treating with carbon disulfide under the action of alkali¹. Cyclocondensation of Ia with some bifunctional electrophiles, such as dimethyl acetylenedicarboxylate, ethyl chloroacetate, oxalyl chloride, \alpha,\omega-dihaloalkanes or dihaloalkenes afforded the expected fused perimidine derivatives IIa-f. Hydrolysis of Ia or its S-methylated derivative Ib with hydazine hydrate gave another key intermediate, 2-hydrazinoperimidine (Ic). Ic was then condensed with some orthoesters, benzoyl chloride, carbon disulfide in alkaline solution or diazotized to the corresponding 1,2,4-triazolo- or 1,2,4-tetrazolo- (4,3-a)perimidines (IIIa-f).

NH N R			N Z X			N N N N N N N N N N N N N N N N N N N	
I	R	П.	×	Y	ın	Z	
a	SH	a	C=0	C=CHCO2CH3	a	СН	
b	SCH ₃	ь	c=0	C=O	ь	C-CH ₃	
С	NH-NH ₂	С	C=0	CH ₂	c	сс ₂ н ₅	
		d	-сн=сн-		d	C-C ₆ H ₅	
		e	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ -		e	C-SH	
		f	-CH ₂ C	H ₂ CH ₂ -	f	N	

A preliminary pharmacological investigation on animals showed that all synthetic products possess no central nervous system depressant effects in mice and no distinct hypotensive action in normotensive rats. However, at a p.o. dose of 50 mg/kg, most compounds exhibited the moderate anorectic activity in mice with the T/C values of 31-85% in comparision with the psychotonic standard, D-amphetamine (100%).

¹⁾ K.C. Liu, J.Y. Tuan and B.J. Shih, Arch. Pharm. (Weinheim), 309, 928 (1976).