THE INTRAMOLECULAR OPENING OF THE OXIRANE RING IN BUTYL 4,5-EPOXY-2-HYDROXYHEXANOATE. A NEW SIMPLE SYNTHESIS OF RACEMIC ALLOMUSCARINE

Marek Chmielewski and Piotr Guzik Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland

<u>Abstract</u> - The new simple synthesis of racemic allomuscarine via the intramolecular opening of the trans substituted epoxide ring in butyl 4,5-epoxy-2-hydroxyhexanoate is described.

The intramolecular opening of the epoxide ring in esters of 4,5-epoxy-2-hydroxyhexanoic acid by the hydroxyl group to a tetrahydrofuran derivative is a new way to C-glycofuranosides. The model β -hydroxyepoxide grouping <u>1</u> can be obtained via an ene reaction between butyl gloxylate and but-1ene followed by the epoxidation of the double bond with m-chloroperoxybenzoic acid.¹

The mixture of diastereomeric epoxides 1 (6:4) treated with 0.5 equiv. of stannic chloride in methylene chloride at -40°C undergoes intramolecular opening of the epoxide ring to afford 2^2 as the major product (40%); ¹H NMR (CDCl₃):0.8-1.9(m,7H,C₃H₇),1.19(d,3H,CH₃), 2.11(m,1H,J₄₄,-14.0, J₃₄=2.6, J₄₅=3.6Hz,H₄), 2.50(m,1H,J₄₅=8.9, J₃₄=5.8Hz,H₄), 4.01(m,1H,H₃), 4.1-4.4(m,3H, H₂,CH₂), 4.63(dd,1H,H₅).

To demonstrate the potential synthetic value of the presented reaction we have performed a new simple synthesis of racemic allomuscarine 3. The synthesis of racemic and natural D-(-)-allomuscarine which occurs in <u>Amanita muscaria</u>³ has been attempted several times in the past.⁴ The ester 2 was treated with freshly prepared dimethylamide magnesium bromide in THF solution to yield amide $\underline{4}$ (90%), mp 74-75°C; ¹H NMR (CDCl₃):1.19(d,3H,CH₃), 2.1-2.6(m,2H,H₄,H₄.), 3.06, 3.25[2s,6H,N(CH₃)₂], 4.03(m,1H,H₃), 4.27(dq,1H,J₂₃=1.7Hz,H₂), 5.03(dd,1H,J₄₅=2.8, J₄₅=7.4Hz,H₅).

$$\underbrace{\overset{\bullet}{\overset{\bullet}_{H}}_{\text{CON(CH}_{3})_{2}}}_{\underline{4}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}_{O}}_{\underline{5}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}_{O}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}} \underbrace{\overset{\bullet}{\overset{\bullet}_{H}}} \underbrace$$

Reaction of <u>4</u> using LAH in boiling THF solution for 1 h gave dimethylamino derivative <u>5</u> (95%); ¹H NMR (CDCl₃):1.08(d,3H,CH₃), 1.75(bd,1H,J₄₄=13.5Hz,H₄), 2.2-2.8(m,3H,H₄,,CH₂N<), 2.48[s,6H,N(CH₃)₂], 3.94(bd,1H,J₃₄=5.5Hz,H₃), 4.22(bq,1H,H₂), 4.42(dq,1H,H₅).Quaternization of <u>5</u> was performed using the high pressure technique which allows to obtain a pure crystalline quaternary salt with almost quantitative yield. ⁵ Treatment of <u>5</u> with equiv. of methyl iodide in acetone solution under 11 kbar at room temperature for 16h afforded allomuscarine iodide <u>3</u>, mp 131-132°C (lit.131-132°C⁶); ¹H NMR (D₂O):1.22(d,3H,CH₃), 1.67(dt,1H,J₄₄=11.8,J₃₄+J₄₅=9.8Hz,H₄), 2.61(dq,1H,J₃₄+J₄₅=13Hz,H₄·) 3.23[s,9H,N(CH₃)₂], 3.46(dd,1H,J_{gem}=13.0, J_{vic}=2.3Hz, -CHH N**<**), 3.71(dd,1H,J_{vic}=8.8Hz, -CHHN**<**), 4.10(m,2H,H₂H₃), 4.73(m,1H,H₅). The ¹H NMR data of <u>3</u> are identical with those published ones.⁴ Further studies on the intramolecular opening of the oxirane ring in 1 are currently in progress.

ACKNOWLEDGEMENT The authors are indebted to Professor A.Zamojski for help in carrying this work, and to the Polish Academy of Sciences for a Grant No MR-I.12.1.1.1.

REFERENCES

- 1. M.Chmielewski, Tetrahedron 1980, 36, 2345.
- 2. The configuration of $\underline{2}$ was proved by its transformation into racemic allomuscarine. Micro-analytical (combustion) data for $\underline{2}$ and all subsequent products ($\underline{3} \underline{5}$) are in full accord with the proposed structures.
- 3. E.Schleusener and C.H.Eugster, Helv.Chim.Acta, 1970, 53, 130.
- S.Wilkinson Quart.Rev., 1961, <u>15</u>, 153, and references cited therein; J.Whiting, Y.-K.An-Young and B.Belleau, <u>Can.J.Chem.</u>, 1972, <u>50</u>, 3322; G.Fronza, C.Fuganti and P.Grasselli, <u>Tetrahedron</u> <u>Lett.</u>, 1978, 3941; S.Pochet and T.Huynh-Dinh, <u>J.Org.Chem.</u>, 1982, <u>47</u>, 193.
- The experiment was performed with cooperation of Dr. J. Jurczak according to the known procedure [M.Pietraszkiewicz, P.Sałański and J.Jurczak, J.Chem.Soc., Chem.Commun., in press].
- 6. C.H.Eugster, F.Hafliger, R.Denss and E.Girod, <u>Helv.Chim.Acta</u>, 1958, <u>41</u>, 583.

Received, 6th July, 1983