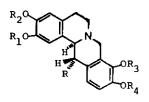
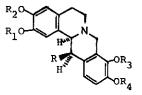
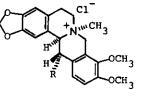
BIOTRANSFORMATION OF THE 13-HYDROXYTETRAHYDROPROTOBERBERINE N-METHYL SALTS BY CALLUS CULTURES OF CORYDALIS SPECIES

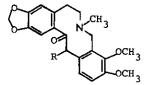

Kinuko Iwasa^{*}, Akiko Tomii and Narao Takao Kobe Women's College of Pharmacy, Motoyamakita-machi Higashinada-ku, Kobe 658, Japan

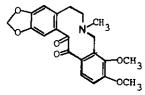

<u>Abstract</u>— Each N-methyl salt of <u>trans</u>- and <u>cis</u>-13-hydroxytetrahydroprotoberberines, ophiocarpine and epiophiocarpine, was biotransformed <u>via</u> corresponding protopine-type alkaloid into a benzindanoazepine.

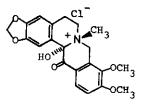

It has been found that the tetrahydroprotoberberine α -N-methyl salts (e.g. 3c) were transformed in intact plants and callus cultures <u>via</u> the protopines into the benzo[c]phenanthridines¹. The only naturally occurring <u>trans</u>-13-methyltetrahydroprotoberberine, thalictrifoline (lb $R_1 = R_2 = CH_3$, $R_3 + R_4 = CH_2$), and some corresponding <u>cis</u> isomers [e.g. cavidine (2b $R_1 = R_2 = CH_3$, $R_3 + R_4 = CH_2$)] have been isolated from natural sources². Both <u>trans</u>- and <u>cis</u>-13-methyltetrahydroprotoberberines (lb and 2b $R_1 + R_2 = R_3 + R_4 = CH_2$) are converted by <u>Corydalis incisa</u> plants and its cell cultures <u>via</u> the N-methyl salts to the protopine-type alkaloids which are intermediates in the biosynthesis of the benzo[c]phenanthridines¹. Two <u>cis</u>-13-hydroxytetrahydroprotoberberines ($2a R_1 + R_2 = R_3 + R_4 = CH_2$ and $R_1 + R_2 = CH_2$, $R_3 = R_4 = CH_3$) have been isolated from <u>Corydalis ophiocarpa</u> while the corresponding <u>trans</u> isomer (e.g. 1a) has not been found from natural sources³. However, we became interested in the biosynthetic conversion of the <u>cis</u>- and <u>trans</u>-13-hydroxytetrahydroprotoberberines into the other class of alkaloids as demonstrated by the biotransformation of both <u>cis</u>- and <u>trans</u>-13-methyltetrahydroprotoberberines into the other

Calluses derived from the stems of <u>Corydalis</u> <u>ophiocarpa</u>, <u>Corydalis</u> <u>ochotensis</u> <u>var</u>. raddeana, and <u>Corydalis</u> <u>platycarpa</u> were used for present study. We have reported that the culture has good biosynthetic capabilities for transformation of exogenous alkaloids.^{1b} Each callus from <u>Corydalis</u> <u>ophiocarpa</u> and <u>Corydalis</u> <u>ochotensis</u> <u>var</u>. raddeana was grown on agar medium containing non — labelled (±)-epiophiocarpine α -N-methyl chloride (3a) for 44 days. Bases A, B, C, and D were isolated from the former callus and its medium and base B was isolated from the latter callus and its medium. Alkaloids A, B, C, and D were not found in the callus and its medium grown

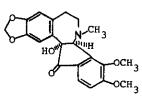
in the absence of the exogenous alkaloid under the same conditions. Alkaloid A, mp 179-180 °C (MeOH), has absorptions ascribed to a hydroxyl (3600-3200 cm⁻¹) and a carbonyl (1690 cm⁻¹) group in its ir spectrum (nujol). The composition of the base, $C_{20}H_{22}O_6N$, was verified by high resolution mass spectrometry. In the ¹H nmr spectrum, the signal at δ 2.22 is assigned to an N-methyl group, the signals at δ 3.74 and 3.84 to methoxyl groups and that at δ 5.94 to a methylenedioxy group. aromatic region of the spectrum, two singlets due to para protons and an AB quartet attributed to ortho protons were observed. The mass spectrum of the base had a parent peak at m/z 385, a base peak at m/z 206, and fragment peaks at m/z 208 and 178. The protopine-type structure (4a) was proposed for base A from the spectral data. Base B, mp 204-205°C (acetone), had a carbonyl absorption at 1660 cm⁻¹ in its ir spectrum. In the high resolution mass spectrum, there is a parent peak of composition $C_{21}H_{21}O_6N$. The mass spectrum of base B showed a parent peak at m/z 383, a base peak m/z 178, and the fragment peaks at m/z 206 and 150. The 1 H nmr spectrum had the signal of an N-methyl group at §1.95, the signals of two methoxyl groups at §3.84 and 3.96, and that of a methylenedioxy group at $\delta 6.00$. The spectrum contained two singlets at 86.71 and 7.44 assignable to para aromatic protons, and an AB quartet at $\delta 6.79$ and 7.70 due to adjacent aromatic protons. The 13 C nmr spectrum showed the signals for aliphatic carbons at 829.69 (CH₂), 42.60(N-CH₃), 50.84 (CH₂), 55.91 (CH₂), 55.91 (OCH ______), 60.81 (OCH ______), and 101.25 (OCH __O) and the signals at $\delta177.0$ and 190.95 attributable to carbonyl carbons. Structure (5) is fully compatible with the spectral data. The mercuric acetate oxidation⁴ of allocryptopine (4c) produced 13-oxoallocryptopine (5) and its ir, mass, ¹H nmr spectra were identical with those of base B. 13-Oxoallocryptopine hydrochloride (5a)⁵ was reduced with NaBH₄ to give 13-hydroxyallocryptopine (4a). The ir, mass, and 1 H nmr spectra of the synthetic 13-hydroxyallocryptopine were identical with those of base A. Thus, the structures of bases A and B were confirmed by each synthesis from allocryptopine (4c). Base C, mp 145-147°C (MeOH-Et₂O), had bands at 3500-3100 and 1710 cm⁻¹ in its ir spectrum, suggesting the presence of a hydroxyl and a carbonyl group, respectively. The high resolution mass spectrum showed a parent peak of composition C21H2106N. The mass spectrum had a parent peak at m/z 383, a base peak at m/z 338, and the fragment peak at m/z 336 and 177. The 1 H nmr spectrum showed one AB quartet at δ 7.60 and 7.06 assigned to ortho aromatic protons, and two singlets at $\delta 6.63$ and 6.27 due to para aromatic protons. A methylenedioxy signal at $\delta 5.88$, two methoxyl signals at $\delta 3.98$ and 3.95, and an N-methyl signal at 62.20 were apparent in the spectrum. A total area of four

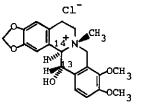


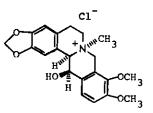



 $\frac{1}{2} R = OH$ $\frac{1}{2} R R = CH_3$

 $3a_{R} = OH$ $3b_{R} = CH_{3}$ $3c_{R} = H$






 $\begin{array}{l} 4a \quad R = OH \\ 4c \quad R = H \end{array}$

5

5a

<u>6</u>

2

8~

.

protons is observed in the $\delta 2.77-4.58$ region. The ¹³C nmr spectrum had signals due to an N-methyl group ($\delta 35.58$), two methoxyl groups ($\delta 56.33$ and 60.87), two methylene carbons ($\delta 28.93$ and 62.33), a methine carbon ($\delta 69.22$), a quaternary carbon ($\delta 85.80$), and one methylenedioxy group ($\delta 100.78$). The eight signals due to the quaternary carbon and four signals due to the tertiary carbon were observed in the aromatic region. A signal of a carbonyl carbon was appeared at $\delta 201.93$. A sufficient proof for structure elucidation of base C has not yet been provided, although it is apparently not a protoberberine, a protopine, or a benzo[c]phenanthridine type. Base D was identified as the administered material.

To clarify the relationship between bases B and C on the biosynthetic pathway, the biotransformation of 13-oxoallocryptopine (5) was examined. Each callus of Corydalis ophiocarpa, Corydalis ochotensis var raddeana, and Corydalis platycarpa was grown on agar medium containing non-labelled 13-oxoallocryptopine (5) during 35 to 47 days. Bases C and E were isolated from the alkaloid fraction of each callus and its medium. Bases C and E were not found from the same fraction in the absence of the precursor. Base E, mp 198-200°C, had hydroxyl and carbonyl bands at 3570 and 1720 cm⁻¹, respectively, in its ir spectrum (CHCl₃). The molecular formula $C_{21}H_{21}O_6N$ for this base was derived by high resolution mass spectral analysis. The mass spectrum had a molecular ion peak at m/z 383, and a base peak at m/z 177. The $^{
m l}{
m H}$ nmr spectrum showed an N-methyl signal at δ 2.62, two methoxyl signals at δ 3.93 and 4.00, a one-proton singlet at $\delta 4.56$, and a two-proton AB quartet at $\delta 5.93$ and 5.95 attributable to a methylenedioxy group. The spectrum contained four proton signals in the aromatic region as two singlets at $\delta 6.56$ and 7.29 due to para protons and an AB quartet at $\delta 7.10$ and 7.67 assigned to ortho protons. The 13 c nmr spectrum had the signals at $^{\delta}$ 33.53 (CH₂), 45.76 (N-CH3), 49.88 (CH2), 70.80 (-CH) and 84.52 (-C-) due to the aliphatic carbons and a signal at 6202.32 attributable to a carbonyl carbon. The ir, mass, and ^{1}H nmr spectra of base E were identical with those of a benzindanoazepine-type alkaloid $(\underline{6})^{b}$ The evidence shows that (\pm) -epiophiocarpine α -N-methyl salt (3a) was biotransformed via base A (4a) to base B (5) which was then converted into base C and base E ($\underline{6}$). The callus from Corydalis ophiocarpa was grown on solid medium containing $(\pm) - [N^{-13}CH_3]$ epiophiocarpine α -N-methyl chloride (3a^{* 13}C enrichment 90%) for 42 days. Labelled bases A*, B*, C*, D*, and E* were isolated from the alkaloid fraction of the callus and its medium. The incorporation of each base was detected by mass, ¹H nmr and/or ¹³C nmr analyses. The ¹³C enrichment of each base was calculated from the intensity of satellites produced in 1 H nmr spectra by spin-spin coupling with 13 C (Table 1).

Table 1. Chemical Shifts (δ) of N-Methyl Group and ¹³C Enrichment from ¹H nmr Spectra.

Isolated	Chemical Shifts of N-Methyl	¹³ C Enrichment (%)
Alkaloids	Group (<u>J</u> 13 _{C-H} , Hz)	
Base A	2.26 <u>d</u> (136)	87
Base B	1.92 <u>d</u> (136)	88
Base C	2.21 <u>d</u> (133)	88
Base D	3.28 <u>d</u> (145)	90
Base E [*]	2.62 <u>d</u> (135)	90

Base D had $[\alpha]_D^{25} + 60^{\circ}$ (MeOH). This value was raised to $+ 142^{\circ}$ after several recrystallizations. The callus from <u>Corydalis ophiocarpa</u> was grown on agar medium containing $(\pm) - [N^{-13}CH_3]$ -epiophiocarpine β -N-methyl chloride $(?^{*13}C)$ enrichment 90%). The formation of bases A, B, C, and E was not detected from the alkaloid fraction of the callus and the medium. The callus from <u>Corydalis ochotensis var. raddeana</u> was grown on solid medium containing $(\pm) - [N^{-13}CH_3]$ -epiophiocarpine α -N-methyl chloride $(3a^{*13}C)$ enrichment 90%) for 44 days and 22 days, respectively (experiments 1 and 2) Bases B^{*} and C^{*} and bases A^{*} and B^{*} were isolated from the alkaloid fraction of the callus and the medium in experiments 1 and 2, respectively. However, base E^{*} was not detected in both experiments (Table 2).

Table 2. ¹³C Enrichment from ¹H nmr Spectra.

Isolated	<pre>13C Enrichment (%)</pre>	
Alkaloids	Experiment 1	Experiment 2
Base A		83
Base B	90	90
Base C	83	
Base D	90	90

Thus (-)-epiophiocarpine α -N-methyl salt ($\frac{3}{2\alpha}$) was biotransformed <u>via</u> 13-hydroxyallocryptopine ($\frac{4}{2\alpha}$) into 13-oxoallocryptopine ($\frac{5}{2}$) which was then converted base C and a benzindanoazepine-type alkaloid (6), respectively.

<u>Corydalis ophiocarpa</u> cells were grown in liquid suspension culture containing non-labelled (\pm)-ophiocarpine α -N-methyl chloride (8) with continuous shaking at 25 °C for 43 days. Bases B and E were isolated from the alkaloid fraction of the callus and the medium. (\pm)-Ophiocarpine α -N-methyl salt (8) would be bioconverted <u>via</u> 13-oxoallocryptopine (5) into a benzindanoazepine-type alkaloid (6). The following conclusions can be drawn from the present work. (a) (\pm)-Epiophiocarpine α -N-methyl salt (3a) bearing a cis-fused quinolizidine ring was biotransformed <u>via</u> 13-hydroxyallocryptopine ($\underbrace{4a}$) into 13-oxoallocryptopine ($\underbrace{5}$). (b) (\pm)-Epiophiocarpine β -N-methyl salt ($\underbrace{7}$) with a <u>trans</u>-fused quinolizidine ring was not be metabolited. (c) The (-)-form of (\pm)-epiophiocarpine α -N-methyl salt ($\underbrace{3a}$) was transformed and the corresponding (+)-form was not. (d) 13-Oxoallocryptopine ($\underbrace{5}$) was piotransformed into base C and a benzindanoazepine-type alkaloid ($\underbrace{6}$). (e) (\pm)-Ophiocarpine α -N-methyl salt ($\underbrace{8}$) having a <u>cis</u>-fused quinolizidine ring was biotransformed <u>via</u> 13-oxoallocryptopine ($\underbrace{5}$) into a benzindanoazepine-type alkaloid (6). (f) Both α -N-methyl salts of (\pm)-epiophiocarpine and (\pm)-ophiocarpine with a <u>trans</u>- and <u>cis</u>-orientation of the protons, respectively, at C-13 and C-14 were converted into 13-oxoallocryptopine ($\underbrace{5}$) by the cell cultures. (g) The pathway ($\underbrace{3a}$) and ($\underbrace{8}$) \rightarrow ($\underbrace{4a}$) \rightarrow ($\underbrace{5}$) \rightarrow ($\underbrace{6}$) and base C is thus defined. This is the first study on the biotransformation of the 13-hydroxytetrahydroprotoberberine type alkaloids. 13-Oxoallocryptopine and a benzindanoazepine-type alkaloid were first isolated from the callus cultures as the metabolite.

ACKNOWLEDGMENTS

The authors are grateful to Professor M. Hanaoka, Faculty of Pharmaceutical Sciences, Kanazawa University, for the generous gift of synthetic benzindanoazepine (6).

REFERENCES

- (a) N. Takao, K. Iwasa, M. Kamigauchi, and M. Sugiura, <u>Chem. Pharm. Bull.</u>, 1976, 24, 2859;
 (b) K. Iwasa and N. Takao, <u>Phytochemistry</u>, 1982, 21, 611.
- 2. (a) H. Taguchi and I. Imaseki, <u>Yakugaku Zasshi</u>, 1965, 84, 955; (b) R.H.F. Manske,
 Can. J. Res., 1942, B20, 53; (c) P.W. Jeffs, <u>Experientia</u>, 1965, 21, 690.
- 3. (a) R.H.F. Manske, <u>Can. J. Res.</u>, 1939, <u>B17</u>, 51 ; (b) P.W. Jeffs and J.D. Scharver, <u>J. Org. Chem.</u>, 1975, 40, 644 ; (c) C. Tani, N. Nagakura, and C. Kuriyama, <u>Yakugaku</u> <u>Zasshi</u>, 1978, 98, 1658.
- 4. N.J. Leonard and R.R. Sauers, J. Org. Chem., 1957, 22, 63.
- 5. The structure (5a) having trans quinolizidine ring is assigned to 13-oxoallocryptopine hydrochloride from ir, 1 H nmr, and 13 C nmr spectra.
- 6. (a) N. Murgesan, G. Blasko, R.D. Minard, and M. Shamma, <u>Tetrahedron Lett.</u>, 1981, 22, 3131; (b) M. Hanaoka, M. Inoue, K. Nagami, Y. Shimada, and S. Yasuda, <u>Heterocycles</u>, 1982, 19, 313.

Received, 5th September, 1983